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Abstract: Most micro-level studies on the impact of agricultural technologies build on cross-
section data, which can lead to unreliable impact estimates. Here, we use panel data covering two 
time periods to estimate the impact of tissue culture (TC) banana technology in the Kenyan small 
farm sector. TC banana is an interesting case, because previous impact studies showed mixed 
results. We combine propensity score matching with a difference-in-difference estimator to 
control for selection bias and account for temporal impact variability. TC adoption has positive 
impacts on banana productivity and profits. The technology increases yields by 40-50% and gross 
margins by around 100%. These large effects represent the impact of TC technology in 
combination with improved management practices and higher input use, which is recommended. 
Looking at the isolated TC effect may underestimate impact because of synergistic relationships. 
The results suggest that extension efforts to deliver the technological package to smallholder 
farmers should be scaled up. 

 

Key words: Agricultural technology; Difference-in-difference; Selection bias; Temporal impact 
variability; Impact; Kenya. 
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Impact of tissue culture banana technology in Kenya: 

A difference-in-difference estimation approach 

 

 

1. Introduction 

There is a large body of literature on agricultural technology adoption and impacts, 

underlining the important role that suitable innovations can play for rural growth and poverty 

reduction in developing countries (Feder et al., 1985; Doss, 2006; Mendola, 2007; Minten and 

Barrett, 2008; Becerril and Abdulai, 2010; Maredia and Raitzer, 2012). Most of this research 

builds on cross-section observational data. For impact assessment, such data can be associated 

with two types of problems, namely non-random selection bias and the inability to analyze 

temporal impact variability. Selection bias can occur when technology adopters differ 

systematically from non-adopters due to observed or unobserved factors (Heckman et al., 1998; 

Duflo et al., 2007; Winters et al., 2011). Temporal impact variability may occur in particular 

when the performance of the technology is influenced by weather or pest infestation conditions, 

which tend to vary over time. Use of panel data is a suitable approach to reduce these problems, 

but panel data are rarely available for impact assessment. In this study, we use panel data and 

suitable statistical techniques for more robust and reliable impact assessment. In particular, we 

combine propensity score matching with a difference-in-difference estimator to analyze the 

impact of tissue culture (TC) banana technology in Kenya. 

Traditionally, bananas are propagated by using suckers from old plantations. While this 

method is cheap for farmers, it contributes to spreading pests and diseases, thus hampering crop 

development and productivity. TC is an in-vitro technique of plant propagation, resulting in 

pathogen-free plantlets. Experience from Latin America and South Africa suggests that TC 
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technology can contribute to significant yield gains in well managed, commercial banana 

plantations (Vuylsteke, 1998). However, it is unclear whether these results can be transferred to 

the small farm sector, where crop management is often influenced by institutional and human 

capital constraints. TC banana technology has been available in Kenya since the late-1990s 

(Wambugu and Kiome, 2001); adoption rates are still relatively low (Njuguna et al., 2010). A few 

studies have analyzed the impact of TC bananas in Kenya, yet with mixed results. While Njuguna 

et al. (2010) reported large productivity gains, Muyanga et al. (2009) did not find significant 

yield differences between TC and conventional bananas. Both studies did not control for possible 

selection bias. Kabunga et al. (2012a) collected cross-section data and showed that there is 

selection bias, using an instrumental variable approach. When controlling for this bias, they 

found a moderate productivity gain associated with TC adoption. But they also pointed out that 

impacts depend on water availability, as TC plants seem to convert water input more effectively 

into banana output than conventional plants (Kabunga et al., 2012a). Hence, temporal impact 

variability may be expected. This makes TC bananas an interesting technology for impact 

assessment with panel data and improved econometric techniques. 

The remainder of this article is organized as follows. The next section describes some further 

background on TC banana in Kenya. Section 3 presents the statistical approach and describes the 

panel data. Section 4 presents and discusses the results. Conclusions are drawn in section 5. 

 

2. Background on TC banana in Kenya 

Banana in Kenya was traditionally grown by smallholder farmers mostly for home 

consumption, with some surplus sold to the local market. More recently, with growing banana 

demand in urban areas, degrees of commercialization have increased (Qaim, 1999). However, 

banana yields in Kenya are low and stagnating, largely due to problems with pests, diseases, 
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drought, and poor agronomic practices (Dubois et al., 2006; Njuguna et al., 2010). Most small-

scale banana growers establish new plantations with suckers from old plantations, thus 

exacerbating pest and disease problems. The potential of TC technology to contribute to 

productivity growth stimulated different organizations to promote this technology in East Africa 

(Smale and Tushemereirwe, 2007). In Kenya, the International Service for the Acquisition of 

Agri-biotech Applications (ISAAA) had started a project in the late-1990s, producing and 

disseminating TC plantlets to local banana farmers (Wambugu and Kiome, 2001). Later on, the 

Kenya Agricultural Research Institute (KARI) and Jomo Kenyatta University of Agriculture and 

Technology (JKUAT) also became involved in TC bananas. Since 2003, Africa Harvest, an 

international nongovernmental organization, has promoted more widespread TC adoption, using 

innovative models of technology delivery with a whole value chain approach. Whereas KARI 

and JKUAT have spun off laboratories and set up farmer group-managed TC nurseries in several 

parts of the country, Africa Harvest collaborates with private companies to provide TC plantlets 

to farmers who are organized in groups. 

Considering Kenya as a whole, less than 10% of all banana farmers have adopted TC so far 

(Njuguna et al., 2010). In Central and Eastern Provinces, where most of the dissemination 

programs started, adoption rates are around 15% (Kabunga et al., 2012b). The TC adoption 

process is relatively slow for two reasons. First, TC plantlets are fairly expensive. Whereas 

traditional suckers can be dug out from old plantations, the average price of a TC plantlet is 

around 80 Kenyan shillings (KES), equivalent to about 1 US dollar. Second, TC plantlets require 

proper plantation management and more inputs in order to yield successfully, implying a 

mentality change for the smallholders, who tend to neglect their banana crop (Qaim, 1999). 
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3. Materials and methods 

3.1 Statistical approach 

We want to establish the impact of TC banana adoption on smallholder yields and profits in 

Kenya. The general idea of impact assessment is to evaluate the mean effect of adopting the 

technology or any other kind of treatment. This requires comparison of the outcome variable for 

the same group of farmers with and without treatment. For example, if the outcome is banana 

yield (Y) the impact of TC technology could be measured by comparing the mean yield of all TC 

adopting banana growers with the mean yield they would obtain had they not adopted the 

technology. The difference between these two mean yields is referred to as the average treatment 

effect on the treated (ATT): 

)1|()1|( 01 =−== AYEAYEATT        (1)  

where 1Y  is the banana yield of an adopting farm household with TC, and 0Y is the yield of the 

same adopting farm household without TC. A = 1 indicates that we are looking at the same group 

of adopters in both cases. Unfortunately, the difference between 1|1 =AY  and 1|0 =AY  cannot 

be observed for the same farm household, because adopters have adopted and we do not know 

what their yield would have been had they not adopted. 

A common approach to get out of this dilemma is to find a control group of non-adopters, 

whose outcomes are compared with those of adopters. However, adoption of TC banana in Kenya 

is non-random; that is, subjects self-select into treatment. In that case, a fundamental problem in 

calculating the treatment effect is that the yield difference between adopters and non-adopters 

may also be due to systematic differences other than TC. This would result in selection bias, and 

the TC treatment effects would be overestimated or underestimated, depending on the type of 

bias. 
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The problem of selection bias can be reduced through different statistical methods. A popular 

method is propensity score matching (PSM), which can control for bias due to observed 

differences between treatment and control groups, but not for unobserved heterogeneity 

(Rosenbaum and Rubin, 1983; Mendola, 2007; Becerril and Abdulai, 2010). Another method is 

instrumental variable (IV) regressions (Greene, 2008). IV regressions can deal with unobserved 

heterogeneity, but the problem is that good instruments are often difficult to find, especially in 

cross-section data. When panel data are available, fixed-effects models can be used (Krishna and 

Qaim, 2012). However, impact analysis with fixed-effects estimators requires sufficient within-

group variability with respect to the treatment variable. Michalopoulos et al. (2004) showed that 

propensity score methods may be preferable in some cases. The advantage of PSM is that it can 

be combined with other estimators to also deal with unobserved heterogeneity, when panel data 

are available. We build on two years of panel data and combine PSM with a difference-in-

difference (DID) estimator. In the following, we first describe the PSM method as such, before 

we introduce the DID estimator. 

The idea of PSM is that TC adopters and non-adopters with similar observable characteristics 

are matched (Rosenbaum and Rubin, 1983; Smith and Todd, 2001, 2005). The propensity score is 

defined as the conditional probability that a farm household i adopts TC given a set of farm 

household characteristics X: 

),|1(Prob)( iXAXp ==           (2) 

where )1,0(=A  is an adoption dummy, and iX is a vector of pre-treatment covariates, including 

variables that can affect both TC adoption and yield (or other outcomes). Propensity scores can 

be estimated using logit or probit models (Maddala, 1983). We use a probit model in this study.  
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Two conditions are imposed when executing PSM, the balancing property and common 

support. The balancing property is achieved when households with the same (or similar) 

propensity scores have the same distribution of X, irrespective of the technological status. This is 

important to reduce the influence of possible confounding factors (Rosenbaum and Rubin, 1983; 

Dehejia and Wahba, 2002). The common support, or overlap, condition assures that households 

with the same (or similar) X values have a positive probability ( 1)(0 << Xp ) of both adopting 

and non-adopting TC technology (Heckman et al., 1997). That is, the calculation of the treatment 

effect is only performed for treated and control households that share a common support in their 

estimated propensity scores, excluding the tails of the distribution of )(Xp . 

When using cross-section data, selection bias is addressed based on a single difference 

matching estimator. Adopters and non-adopters with similar observable characteristics are 

matched (Dehejia and Wahba, 2002). After estimating the propensity score, the ATT is estimated 

as: 

  { } { }0|)(,0|)(,1| 01 ==−== AXpAYEXpAYEATT     (3) 

With this estimator, possible differences between adopters and non-adopters that are due to 

unobserved factors cannot be controlled. This is different when panel data are available, as in our 

case. With panel data, PSM can be combined with a DID estimator, so that time-invariant 

unobserved factors cancel out (Smith and Todd, 2005). Thus, a combination of PSM and DID can 

improve the quality of non-experimental evaluation significantly (Blundell and Costa Dias, 2000; 

Benin et al., 2011). 

The DID estimator exploits the fact that observations from two time periods are available 

for each individual, in our case 2009 and 2010. The ATT of TC adoption is then calculated by 
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comparing the changes in individual outcomes among adopters (𝑌20101 − 𝑌20091 ) with the changes 

among their non-adopting matches (𝑌20100 − 𝑌20090 ): 

{ } { }0|)(,0|)(,1| 0
2009

0
2010

1
2009

1
2010 ==−−=−= AXpAYYEXpAYYEATT    
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where 1N is the number of matches. 

Different matching algorithms are available for PSM (Caliendo and Kopeinig, 2008). The 

most common ones are kernel matching and nearest neighbor (NN) matching. Kernel matching 

computes treatment effects by deducting from each outcome observation in the treatment group a 

weighted average of outcomes in the control group. NN matches adopters with non-adopters with 

the nearest propensity score, while controlling for differences between adopters and non-adopters 

(Abadie and Imbens, 2006). We use kernel matching with two band widths (BW=0.03 and 

BW=0.06) and NN matching one and five (NN=1 and NN=5). Analyses are based on common 

support and caliper, reflecting that the distributions of TC adopters and non-adopters were closely 

alike in terms of observable characteristics. As a balancing test, we test for significant differences 

in terms of independent variables between TC adopters and non-adopters before and after 

matching (Dehejia and Wahba, 2002). 

In estimating the ATT, we use bootstrapping methods for robust standard errors, because we 

match adopting to non-adopting households with replacement, as explained further by Dehejia 

and Wahba (2002). The outcome variables considered are banana yield (annual production per 

acre) and profit (annual gross margin per acre). 
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3.2. Data and descriptive statistics 

The empirical analysis is based on two rounds of a survey of banana farmers, covering 

Central and Eastern Provinces of Kenya. In these two provinces, the districts of Meru, Embu, 

Kirinyaga, Kiambu, Murang’a, and Thika were purposively selected; these are the main banana-

growing districts where TC dissemination efforts have been ongoing for several years. In each 

district, banana-growing villages were purposively selected. At the village level, farm households 

were sampled with a stratified random procedure. Separate village listings of TC adopters and 

non-adopters were prepared, and adopters were oversampled to have a sufficient number of 

observations for robust impact assessment. The first round of data was collected between 

September and December of 2009, referring to banana production in 2009, which was a drought 

year in large parts of Kenya. The second round of data was collected in December 2010 and 

January 2011, referring to production in 2010 with more rainfall. 

Table 1 shows the distribution of adopters and non-adopters during the two survey rounds. In 

2009, a total of 385 banana farmers were sampled, comprising 223 TC adopters and 162 non-

adopters. In 2010, 320 of these farmers were interviewed again: 193 were adopters and 127 non-

adopters. The sample attrition rate of approximately 17% is within the bounds of attrition 

commonly found in longitudinal surveys from developing countries (Alderman et al., 2001). An 

analysis of observable characteristics for 2009 showed that the dropouts in 2010 did not differ 

systematically from those who remained in the sample. Our analysis is based on a balanced 

sample, that is, we use 320 farm households for which two rounds of data are available. Out of 

these, around 60% are TC adopters, and 40% are non-adopters. 

Using appropriate weights to take account of the multi-stage and stratified sampling 

procedure, the sample is considered representative for banana farmers in Central and Eastern 

Provinces of Kenya. In each farm household, the household head was interviewed using a 
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structured questionnaire. Data on farm and household characteristics were collected, including 

input and output details for the banana crop. Additionally, data on institutional aspects, such as 

access to information, credit, roads, and market infrastructure were covered in the questionnaire.  

Table 2 shows descriptive sample statistics. TC adopters and non-adopters are similar with 

regard to gender of the household head, household size, and income from off-farm activities. 

Significant differences are observed for a number of other characteristics, such as education, age, 

farm size, and other productive assets. There are also differences in terms of membership in 

social groups and access to information, factors which were shown in other studies to influence 

technology adoption behavior (Bandiera and Rasul, 2006; Matuschke and Qaim, 2009; Murshed-

E-Jahan and Pemsl, 2011). 

Mean values for the two outcome variables of interest, banana yield and gross margin, are 

shown in Table 3 for 2009 and 2010. Both adopters and non-adopters had significantly higher 

yields in 2010 than in 2009. This is in line with the better rainfall conditions in 2010. Gross 

margins, expressed as total value of banana production less total variable costs per acre, were also 

higher in 2010 than in 2009, albeit the difference is statistically significant only for the adopters. 

Strikingly, yields and gross margins in both years were lower for adopters than for non-adopters. 

Yet, this comparison should not be overinterpreted as it may be misleading. Kabunga et al. 

(2012a) showed that there is negative selection bias, meaning that farmers with lower than 

average yields are more likely to adopt TC technology in Kenya. This is plausible. As pathogen-

free TC plants help reduce pest and disease problems, farmers suffering more from such 

problems have a higher incentive to adopt this technology. In the next section, we derive TC 

treatment effects that control for such selection bias. 
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4. Results and discussions  

4.1. Propensity scores and matching 

Table 4 shows the results of the probit model, which we estimated in order to derive the 

propensity scores. The estimates suggest that farm size, the value of other productive assets, off-

farm income, education, group activities, and access to agricultural information are important 

determinants of TC banana adoption in Kenya. This is in line with earlier adoption research for 

TC bananas and other technologies in the small farm sector (Feder et al, 1985; Doss, 2006; 

Kabunga et al., 2012b). The estimated model with common support imposed and the balancing 

property condition satisfied is statistically significant and has a reasonable goodness-of-fit. 

Figure 1 shows the distributions of propensity scores before and after matching.1 The 

balancing test results are shown in Table 5. These results are based on kernel matching 

(BW=0.06). Before matching, TC adopters were significantly different from non-adopters with 

respect to most characteristics. Of the 193 TC adopters, 21 did not match any of the non-adopters 

and were thus excluded from the subsequent analyses. The test results show that all significant 

differences between adopters and non-adopters in the unmatched sample were eliminated after 

matching2

 

 

4.2. Average treatment effects on the treated 

The ATT, calculated with the DID estimator and different matching algorithms, are shown in 

Table 6. We use log values for the two outcome variables, banana yield and gross margin, so that 

the results can be interpreted in terms of percentage changes. Adoption of TC has large positive 

                                                 
1 Matching estimates were obtained using the Psmatch2 command in Stata 11 developed by Leuven and Sianesi 
(2003). 
2 Other balance indicators were computed for kernel and nearest neighbor matching, as proposed by Sianesi (2004). 
These additional specifications passed the balancing tests; they are not reported here to save space. 
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effects. During the period of investigation this technology increased banana yields by 40-50% 

and banana gross margins by 90-120%. These results are quite different from the simple 

comparison of TC yields and gross margins in Table 3, confirming that there is significant 

negative selection bias. Farmers with lower than average yields and gross margins are more likely 

to adopt TC. Hence, a simple comparison between adopters and non-adopters underestimates the 

technology’s treatment effect. This selection bias is controlled for by the PSM and DID 

methodology. Most of the estimates in Table 6 are significant, underlining the robustness of the 

results. 

Kabunga et al. (2012a) had analyzed yield effects of TC bananas in Kenya based on cross-

section data from 2009. Using an IV regression approach, they also found negative selection bias 

and identified an average net yield effect of TC technology of 7%. This is much lower than the 

yield effect found here, which is due to three reasons. First, 2009 was a drought year, which 

dampened the TC yield effect. Here, we use data from 2009 with below average rainfalls and 

from 2010 with more rainfalls, thus taking better account of temporal fluctuations. Second, 

results from IV regressions depend on the strength of the instruments; good instruments are often 

not easy to find in cross-section data. The panel approach employed here is expected to lead to 

more robust and reliable results. Third, the interpretation of the results in the two studies is 

different. Kabunga et al. (2012a) estimated a production function where they controlled for 

differences in input use. Thus, the TC yield effect in their study has a ceteris paribus 

interpretation: when adopting TC and holding all other inputs constant, yield levels would 

increase by 7%. But for TC adopters it is recommended to use more inputs such as fertilizer and 

water and also change crop management practices. Hence, TC can be considered as a 

technological package, the impact of which is bigger than that of just adopting TC alone. Here, 

we consider the impact of the whole package. As the differences input use and crop management 
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are induced by TC technology (rather than other factors that we control for through PSM), this is 

justified. Kabunga et al. (2012a) also noted that the yield effects of TC technology can be much 

higher when the use of complementary inputs is adjusted as recommended. 

 

5. Conclusion 

We have analyzed the impact of TC banana technology adoption in Kenya. Unlike previous 

impact studies for TC and other agricultural technologies, most of which build on cross-section 

data, we have used panel data covering two time periods. This allowed us to combine propensity 

score matching with a difference-in-difference estimator to control for selection bias and account 

for temporal impact variability. The estimation results show that TC adoption has positive 

impacts on banana productivity and profits. The technology increases yields by 40-50% and gross 

margins by around 100%. Thus, TC banana technology can contribute significantly to rural 

development in the Kenyan small farm sector. 

The estimated effects are very large. They represent the impact of TC technology in 

combination with improved management practices and higher input use. One might argue that 

improved management practices and higher input use could also increase banana yields without 

TC technology. While this is true, smallholder banana growers tend to use very low amounts of 

inputs in their conventional crop. Thus, TC adoption can be seen as a trigger to intensify banana 

production systems. Against this background, it is useful to look at the impact of the complete 

technology package. Even among the TC adopters, labor use and the application of inputs such as 

fertilizer and water are still quite low (Kabunga et al., 2012a). Stronger intensification could 

further improve the outcomes. 

This discussion underlines that technology adoption is not easy to define when the 

technology consists of various components. This holds true for many natural resource 
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management technologies that largely build on agronomic innovation (Lee, 2005; Noltze et al., 

2012). In the case analyzed here, switching to TC combined with better crop management and 

higher input use produces positive synergistic effects. In contrast, adopting only TC without any 

other changes in traditional practices can lead to frustrating experience. Hence, TC is a 

knowledge-intensive technology, and successful uptake requires proper extension. This is also 

one of the reasons why TC adoption is still relatively low in Kenya. Our results suggest that 

extension efforts to deliver the technological package to smallholder farmers should be scaled up. 
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Tables 

 

Table 1: Number of sampled farm households in two survey rounds 

 Year of survey  
 2009 2010 Attrition rate (%) 
TC adopters 223 193 13.4 
Non-adopters  162 127 20.9 
All banana growers 385 320 16.9 
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Table 2. Descriptive statistics for TC adopters and non-adopters (2009) 

 Mean (SD) 

Variables  All  Adopters Non-adopters  Difference  

Household characteristics      
Male hh head (dummy) 0.18(0.38) 0.16(0.36) 0.20 (0.41) -0.26 
HH size (members) 4.56(2.02) 4.60 (2.02) 4.51(2.01) 0.09 
Education of hh head (years) 8.44(4.05) 9.03(4.09) 7.55(3.83) 1.48*** 
Age of hh head (years) 58.85(13.65) 60.21(13.35) 56.79(13.90) 3.41*** 

Asset and financial capital     

Off-farm income (‘000 KES) 92.24(151.09) 90.94(144.92) 94.22(160.57) -3.28 
Farm size (acres owned) 3.34 (3.00) 3.83 (3.27) 2.60 (2.35) 1.24*** 
Other productive assets (‘000 
KES) 

165.82(203.50) 193.30(220.41) 124.06(167.06) 69.24*** 

Social capital and information access    

Group membership (dummy) 0.91(0.28) 0.97(0.20) 0.83(0.38) 0.14*** 
Information constrained (dummy) 0.28(0.45) 0.19(0.39) 0.42(0.49) -0.23*** 
Knows TC nursery location 
(dummy) 

 
0.78(0.43) 0.96(0.20) 

 
0.50(0.50) 

 
0.45*** 

Drought experience     
Affected by drought in 2009 
(dummy) 

0.47(0.50) 0.48 (0.50) 0.44(0.49) 0.47 

Affected by drought in 2010 
(dummy) 

0.21(0.41) 0.24 (0.43) 0.17 (0.37) 0.07 

Number of observations  320 193 127  
Note: hh means household. 
* Significant at 10% level. 
** Significant at 5% level. 
*** Significant at 1% level. 
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Table 3. Descriptive statistics for outcome variables 

  2009  2010  Difference 

Variable   Mean SD  Mean SD   

Banana yields 
(‘000 kg/acre) 

All  8.40 7.47  13.09 11.66  4.69*** 

Adopters  7.65 7.59  11.72 10.16  4.07*** 

Non-
adopters 

9.54 7.18  15.15 13.41  5.63*** 

Banana gross 
margins (‘000 
KES/acre) 

All  91.66 8.62  111.17 112.03  19.71*** 
Adopters  87.29 9.15  107.46 106.54  20.17** 

Non-
adopters 

98.31 7.74  117.33 120.09  19.02 

** Significant at 5% level. 
*** Significant at 1% level. 
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Table 4. Probit estimates for propensity to adopt TC banana (2009) 

Variables  Coefficients 
Farm size 0.148**(0.064) 
Farm size squared    -0.008**(0.003) 
Other productive assets 2.20E-06* (1.28E-06) 
Other productive assets squared   -1.41E-12(1.22E-12) 
Information constrained   -0.351*(0.198) 
Education of hh head 0.070**(0.028) 
Male hh head 0.282(0.244) 
Age of hh head   -0.078(0.052) 
Age squared 0.001*(0.000) 
Household size 0.046(0.046) 
Group membership 1.468***(0.390) 
Knows TC nursery location 1.754***(0.064) 
Off-farm income   -1.92E-06***(1.28E-06) 
Affected by drought in 2009 0.108(0.175) 
Constant    -2.530*(1.363) 
Regression statistics 

 Pseudo R-squared 0.35 
LR chi-square 149.49*** 
Number of observations 320 

Notes: hh means household. Standard errors in parentheses. 
* Significant at 10% level. 
** Significant at 5% level. 
*** Significant at 1% level. 
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Table 5. Balancing test for differences between TC adopters (treated) and non-adopters (control) 

  Before matching   After matching  

Variable Treated  Control  t-value  Treated  Control  t-value 

Propensity score 0.777 0.350 15.57***  0.747 0.747 0.03 

Farm size 3.834    2.597 3.68***  3.495    3.796 -0.83 

Farm size squared 25.334    12.232 2.26**  22.093     26.962 -0.70 

Other productive assets  1.9x105 1.2x105 3.02***  1.7x105 1.6 x105 0.81 

Assets squared 8.6 x1010 4.3 x1010 1.91*  7.4 x1010 6.0 x1010 0.69 

Information constrained 0.192    0.417 -4.52***  0.2093 0.170 0.94 

Education of hh head 9.034    7.552 3.25***  8.881    8.386 1.20 

Male hh head 1.155    1.204 -1.13  1.145    1.187 -1.05 

Age of hh head 60.207    56.795 2..20**  58.581    60.363 -1.36 

Age squared 3802.2    3417.3 2.10**  3589.4    3778.0 -1.26 

Household size 4.601    4.512 0.39  4.581    4.520 0.29 

Group membership 0.969    0.827 4.53***  0.971    0.961 0.50 

Knows TC nursery 0.959    0.504 11.30***  0.953    0.940 0.55 

Off-farm income 90937     94215 -0.19  85196     76541 0.64 

Affected by drought 2009 0.482    0.441 0.72  0.494    0.535 -0.30 

* Significant at 10% level. 
** Significant at 5% level. 
*** Significant at 1% level. 
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Table 6. Average treatment effect on the treated (ATT) of TC banana (2009-2010) 
 Matching algorithm 

 

 
Outcome  

Kernel 
(BW=0.03) 

Kernel 
(BW=0.06) 

Nearest-neighbor  

(NN=1) 
Nearest-neighbor  

(NN=5) 
ATT ATT ATT ATT 

Yields  0.457**(0.225) 0.502**(0.234) 0.414(0.263) 0.428*(0.232) 
Gross margins 0.987*(0.567) 1.142*(0.593) 1.247*(0.702) 0.869(0.592) 

Notes: 0.03 and 0.06 band widths (BW) and Epanechnikov kernel used for kernel and 1 and 5 nearest neighbor (NN) 
matching. Bootstrapped standard errors, based on 1000 replications, are reported in parentheses. Log differences are 
reported for the outcome variables. Multiplied by 100 these can be interpreted as percentage effects. 
* Significant at 10% level. 
** Significant at 5% level. 
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Figures 
 

 
                      (a) Before matching                                                   (b) After matching 
 
 
Fig. 1. Propensity score distributions 
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