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Abstract

We study the effects of a labor-intensive health care sector within an R&D-driven

growth model with overlapping generations. Health care increases longevity and la-

bor participation/productivity. We examine under which conditions expanding health

care enhances growth and welfare. Even if the provision of health care diverts labor

from productive activities, it may still fuel R&D and economic growth if the additional

wealth that comes with expanding longevity translates into a more capital/machine-

intensive final goods production and, thereby, raises the return to developing new

machines. We establish mild conditions under which an expansion of health care be-

yond the growth-maximizing level is Pareto-improving.

JEL classification: I15, I18, O11, O41, O43

Keywords: endogenous growth, mortality, (Blanchard) overlapping generations, health

care, research and development, sectoral composition.
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1 Introduction

The ongoing debate on health care reform in the United States illustrates the importance of

health policy design under both political and economic considerations. While proponents

of health care reform typically argue that there are important economic spillover effects of

an individuals’ health status on the economy, opponents claim that the costs and associated

tax increases outweigh the benefits of improved population health. The aim of our paper

is to contribute to this debate by formalizing the growth effects of a health care sector that

contributes toward lowering mortality and raising productivity and/or labor participation,

but also diverts economic resources — in particular labor inputs — away from productive

activities.

Economists often argue that health in general and longevity in particular have posi-

tive impacts on economic prosperity (see for example Barro, 1997; Shastry and Weil, 2003;

Weil, 2007; Lorentzen et al., 2008; Suhrcke and Urban, 2010; Cervellati and Sunde, 2011).

The channels through which health is usually deemed to exert its positive influence are

summarized in Bloom and Canning (2000) as (i) healthier workers are more productive,

(ii) healthier people invest more in human capital which again increases their productivity,

(iii) improvements in longevity increase incentives to invest in physical capital and (iv)

decreases in mortality can induce a transition to low fertility and thereby create a demo-

graphic dividend. The first issue has been analyzed in Bloom and Canning (2005) and

Prettner et al. (2012) who show that health is an aspect of human capital of an impor-

tance similar to education. The second point has been addressed by e.g. Kalemli-Ozcan

et al. (2000) and Cervellati and Sunde (2005), who show that increasing longevity leads to

higher educational investments and in turn to faster economic growth. The third point has

been most extensively analyzed (see for example Reinhart, 1999; Futagami and Nakajima,

2001; Aı́sa and Pueyo, 2006; Azomahou et al., 2009; Schneider and Winkler, 2010; Heijdra

and Mierau, 2011), where the framework of perpetual growth due to learning-by-doing

spillovers according to Romer (1986) is used to show that faster capital accumulation as

caused by increases in longevity leads to faster economic growth. The fourth issue has

been emphasized by Bloom et al. (2003) who argue that a drop in the fertility rate of a

country decreases the overall dependency ratio because it leads youth dependency ratios

to decline instantaneously while old age dependency ratios remain unchanged for a sub-

stantial period of time. In the medium run, this frees parental as well as governmental

resources that can then be invested in productive activities.1

However, some authors cast doubt on the view that better health, as represented by

increasing longevity, substantially increases long-run economic growth (see for example

Hazan and Zoabi, 2006; Acemoglu and Johnson, 2007; Hazan, 2009). While Hazan and

Zoabi (2006) challenge the view that an increase in parents’ life expectancy increases

1Lorentzen et al. (2008) investigate empirically the role of (ii)-(iv) as pathways in the relationship
between adult mortality and economic growth. Using instrumental variable estimations to account for
endogeneity, they find a strong causal effect of adult mortality on growth as well as evidence for channels
(ii) and (iv).
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investments in their children’s human capital accumulation, Acemoglu and Johnson (2007)

argue that there is barely any demographic dividend to be expected from increasing life

expectancy because population growth increases substantially in response to decreasing

mortality. Furthermore, Hazan (2009) argues that increased life expectancy does not

increase lifetime labor supply, implying again a more ambiguous role for health in economic

growth.

This discussion illustrates that the interrelations between aging, health and economic

growth are complex and by far not completely understood. Our paper aims to shed addi-

tional light on another — until now disregarded — channel through which the provision

of health care and the resulting improvements in longevity could potentially impact upon

long-run economic prosperity namely incentives to invest in research and development

(R&D). The rationale for doing so is that R&D has been identified as the main driving

force of increases in living standards in modern knowledge based economies (see for exam-

ple Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992; Jones, 1995;

Kortum, 1997). It has been shown by Prettner (2011) that population aging matters for

economic prosperity within these types of growth models. Hence, we base our analysis on

an R&D based endogenous economic growth model of the Romer (1990) type into which

we introduce (i) an overlapping generations structure in the vein of Blanchard (1985); and

(ii) a labor-intensive health care sector, the output of which improves both survival and

productivity/labor participation and is financed by private payments and/or labor income

taxes.

In so doing we place particular emphasis on the impact of an expanding health care

sector on the other sectors of the economy: R&D, intermediate goods production and

final goods production. Indeed, with an employment share of 8.3% in the US (May 2012;

Bureau of Labor Statistics, 2012) and around 7% in a number of major EU countries

(France, Germany, Sweden, UK; EUROSTAT, 2012) health care constitutes a major in-

dustry. Furthermore, in the period 2008-2012 US health care employment has experienced

growth rates of around 2% per annum, as compared to a decline by -1.1% per annum in

non-health employment (Altarum Institute, 2012). This trend is reflective of a longer-

term development reaching back into the 1980s (for additional evidence see Pauly and

Saxena, 2012). Against this backdrop, Pauly and Saxena (2012) highlight the importance

of understanding the nature of the shift in employment into the health care sector from

other sectors of the economy and its consequences. They raise the question as to “what

is the correct story: does medical spending growth divert real labor resources away from

more valuable uses into health care, or is health care employment growth, [...], the shin-

ing exemplar of high tech job creation? or could both be true?” (quoted from Pauly

and Saxena, 2012). They conclude from their empirical analysis of US employment that

medical workforce growth was associated with reductions in (relative) employment within

manufacturing, construction and information, and with increases in (relative) employment

within public administration and other services. When controlling for productivity growth

the authors found that the correlation between employment in health care and in man-
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ufacturing was significantly reduced which led them to conclude that employment was

pushed out of manufacturing (due to increases in productivity) rather than pulled into

health care.

Our analysis is suited to explain these structural changes induced by a growing provi-

sion of health care. As long as health-related improvements in productivity/participation

increase the effective labor force in excess of additional health care employment, the im-

pact on employment in both final goods production and R&D is unambiguously positive,

and so is the impact of health care on economic growth. Interestingly, however, an expan-

sion of the health care sector may stimulate growth even if it requires more effective labor

than it is generating. The reason behind this is a shift in employment from final goods

production (i.e., manufacturing) into the R&D sector: As individuals survive longer, they

accumulate greater wealth (relative to consumption) which is subsequently converted into

capital and machines used for final goods production. With a simultaneous decline in

the interest rate, the production of blueprints for new intermediate goods becomes more

profitable and labor is pulled into the R&D sector. At the same time, the increase in

capital intensity in final goods production renders this labor available. To the observer a

productivity increase pushes out labor from manufacturing while, at the same time, the

health care sector is expanding. While our model is therefore largely consistent with the

observations by Pauly and Saxena (2012), it suggests the following pathway behind the

changes in sectoral employment: To the extent that improvements in longevity lead to

an accumulation of additional capital, the provision of health care is actively driving the

increase in labor productivity and not only absorbing labor. Moreover, the provision of

health care stimulates economic growth to the extent that the labor set free from man-

ufacturing is absorbed by the R&D sector rather than the medical sector alone. If the

health care sector expands beyond a certain threshold, however, it diverts labor from both

final goods production and R&D and then stifles economic growth. Indeed, a numerical

assessment of our model for the Euro area indicates that their member countries’ health

sectors are already too large from a growth maximizing point of view.

The ambiguous impact of an expanding health care sector on economic growth appears

well in line with the relationship between per capita income growth and the health share

(health expenditure as a percentage of GDP) that is depicted in Figure 1. Averaging over

the time period 1995 to 2010 the respective data (from World Bank, 2012) for a set of

180 countries and fitting a quadratic polynomial suggests that economic growth tends to

be low for countries with a poorly developed health sector, with the same holding true

for countries with a very large health sector. The quadratic shape is robust against the

introduction of initial income levels to account for convergence. Countries with a health

share roughly the size of 6-7% of their GDP seem to experience the highest growth rates,

which is broadly consistent with (i) our theoretical results of an interior growth maximizing

size of the health care sector; (ii) with the numerical implications for the Euro area (see

Section 4); and (iii) with empirical evidence on the association between adult mortality
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and growth (cf. Kelley and Schmidt, 1995; Bhargava et al., 2001).2
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Figure 1: Average growth of per capita GDP versus health share, i.e., health expenditure
as percentage of GDP, for 180 countries (1995-2010).

Whether a reduction in economic growth is justified by the benefits of health care

ultimately pins down to a value judgment. We show that, within the context of our model,

an expansion of health care beyond its growth maximizing level is Pareto optimal under

relatively mild conditions. To the extent that a first-order increase in life-cycle utility

from lower mortality offsets a second-order loss from a reduction in economic growth, this

appears intuitive. However, our analysis shows that the trade-off is more complex and

Pareto-optimality is by no means a foregone conclusion. First, a reduction in mortality

may well imply a reduction in life-cycle consumption as individuals need to stretch their

resources over an expanding life-course, and we show that it always does so for old-enough

cohorts. This amounts to the familiar trade-off between quantity and quality of life (cf.

Murphy and Topel, 2006; Hall and Jones, 2007). A reduction in life-cycle consumption

then constitutes a first-order utility-loss which would need to be offset by the direct benefits

from extended life-time. We show for the Romer-Blanchard-Yaari setting with logarithmic

utility from consumption that all cohorts — those already alive at the point of the ’reform’,

2Kelley and Schmidt (1995) find a significant positive cross-effect between the crude death rate and the
level of per capita income as explanatory variables for the growth rate of per capita income. Bhargava et al.
(2001) identify a significant positive relationship between adult survival rates and growth rates only for low
and middle income countries, whereas an insignificant (and weakly negative) relationship holds for high
income countries. Reasons for this relationship may lie both in decreasing returns to health production
(implying increasing marginal costs of lowering mortality), and in the fact that mortality reductions in
high income countries affect to a large extent retirees who no longer contribute toward production. Both
factors imply a hump-shaped impact of health provision on economic growth.
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those who are born at that date, and those yet unborn — benefit (to some degree) from

an increase in health care beyond the growth-maximizing level if the maximized growth

rate and, thus, the interest rate, are sufficiently high to begin with. In such a case, even if

consumption levels fall due to the greater provision of health care, the high rate of initial

consumption growth secures an overcompensating benefit from an expansion in life-time.

Finally, our consideration of life-cycle utility cohort-by-cohort (akin to Saint-Paul, 1992)

allows us to identify those who are least prone to benefit from an increase in health care.

It turns out that this is a ’middle-aged’ cohort that has accumulated intermediate levels

of financial wealth: Individuals from this generation are not yet rich enough and do not

yet consume enough to benefit greatly from the expansion of longevity (as older cohorts

would); yet at the same time they rely already on financial wealth for supporting their

consumption to an extent that they no longer benefit greatly from the boost in life-cycle

human wealth coming with a reduction in mortality (as younger cohorts would).

Three articles are related to our approach. Aı́sa and Pueyo (2004), Aı́sa and Pueyo

(2006) and Schneider and Winkler (2010) also develop a hump-shaped relationship between

the provision of health care and endogenous growth within an OLG economy.3 In their

models, however, growth is driven by capital spillovers a la Romer (1986). This implies

that they neglect (a) the role of the R&D sector for generating knowledge, and (b) the

role of endogenous changes in the interest rate, which turn out to be important for the

allocation of workers across sectors. Both of these aspects are included in our model as a

basis for a deeper and more differentiated explanation of the mechanisms underlying the

health-growth nexus.

Aı́sa and Pueyo (2004) and Aı́sa and Pueyo (2006) assume that health care is produced

from converted consumption/capital goods, while labor is only used in the production of

consumption/capital goods. Thus, per se their model does not allow to trace the strik-

ing change in employment shares identified by Pauly and Saxena (2012).4 The set-up

in Schneider and Winkler (2010) is closer to ours in that health care competes for labor

with final goods production. Nonetheless, the neglect of an R&D sector in the underlying

Romer (1986) framework and the direct trade-off between employment in health care or in

final goods production implies rather different results. In their baseline model Schneider

and Winkler (2010) scale the spillover in a way that the size of the labor input in final

goods production is immaterial. In this case, health care has an unambiguously positive

impact on economic growth, as improved survival lowers the consumption-capital ratio

and, thereby, enhances economic growth without any offsetting impact through the allo-

3van Zon and Muysken (2001) consider health production within the endogenous growth model by Lucas
(1988). Similar to our model, the health care sector competes for labor with the final goods sector and the
human capital sector. While van Zon and Muysken (2001) also find a hump-shaped relationship between
health care and economic growth. However, as they consider the planner solution for a representative
agent economy, the transmission channels are yet again very different.

4For reasons of analytical tractability, Aı́sa and Pueyo (2004) and Aı́sa and Pueyo (2006) need to assume
that the mortality rate decreases in the level of health care (or equivalently health expenditure) per unit of
GDP. This has the awkward implication that for a given level of health care inputs, mortality increases in
the level of GDP, a relationship that contradicts most empirical evidence (e.g. Filmer and Pritchett, 1999;
Cutler et al., 2006).
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cation of labor. In an extension Schneider and Winkler (2010) allow for a negative impact

of health care employment on employment in the final goods sector. While this leads

to the expected hump-shaped relationship between health care and economic growth, the

specification implies yet again a different channel of transmission. In particular, in Schnei-

der and Winkler (2010) a reduction in final goods employment is a necessary condition

for a negative impact of health care on economic growth. In contrast, in our set-up a

reduction in final goods employment contributes toward economic growth as long as it

enhances R&D employment.

A second aspect that is not properly picked up by the models based on Romer (1986) is

the endogeneity of the interest rate. This is out of line with recent economic-demographic

modeling which typically allows for a response in the interest rate to demographic aging

within a closed economy or to differential aging within an open economy. Indeed, the

calibrated OLG models by e.g. Miles (1999), Attanasio et al. (2007) and Krueger and

Ludwig (2007) predict a considerable reduction in the (world) interest rate due to aging

in industrialized countries. As it turns out in our model the reduction in the interest rate

due to the greater accumulation of wealth and capital by an aging population is indeed

the crucial force behind the reallocation of labor from final goods production to the R&D

sector; and, thus, a factor in the enhancement of growth that remains unaccounted for in

Aı́sa and Pueyo (2004), Aı́sa and Pueyo (2006) and Schneider and Winkler (2010).

Finally, we consider the welfare implications of expanding health care beyond its

growth-maximizing levels. While Aı́sa and Pueyo (2004) and Aı́sa and Pueyo (2006) do

not consider the optimality of health care at all, Schneider and Winkler (2010) focus on the

individually optimal choice of health care. Our focus is different in that we examine how

a small increase in the provision of health care beyond its growth-maximizing level affects

the life-cycle utility of different cohorts.5 In so doing, we assess the Pareto-optimality of

a health care reform. Again, the reduction of the interest rate in response to an increase

in longevity turns out to be important: Lower interest rates imply less individual saving

and, therefore, less scope for growth in individual consumption. As it turns out this effect

is compromising Pareto-optimality and needs to be compensated by a sufficient growth

rate to begin with.

The paper proceeds as follows: Section 2 develops a model of endogenous economic

growth with demography and a health care sector financed by a mix of private payments

and a tax on labor income. Section 3 examines in detail the impact of a variation in the

size of the health care sector on long-run economic growth, the results being numerically

illustrated for the Euro area in Section 4. The welfare analysis is provided in Section

5, and the concluding Section 6 points out policy implications, limitations and scope for

future work.

5For a similar analysis regarding the effects of changes in taxation see, e.g., Saint-Paul (1992).
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2 The model

In this section we describe the structure of the model, placing particular emphasis on

its demographics properties, the role of health care, and the sectoral composition of the

economy. We derive aggregate laws of motion for capital and consumption and solve for

the long-run economic growth rate along a balanced growth path.

2.1 Basic assumptions: sectoral set-up and demography

The basic structure of our model follows Prettner (2011) who integrates an overlapping

generations structure in the spirit of Blanchard (1985) into a Romer (1990) model of en-

dogenous economic growth driven by purposeful R&D investments. The model economy

is assumed to consist of four sectors: final goods production, intermediate goods produc-

tion, R&D and health care. Altogether there are two productive factors that can be used

in these four sectors: capital and labor. Labor (in the form of workers) and machines

are used to produce final goods in a perfectly competitive market; capital and blueprints

are used in the Dixit and Stiglitz (1977) monopolistically competitive intermediate goods

sector to produce machines; labor (in the form of scientists) is used to produce blueprints

in the perfectly competitive R&D sector; and, finally, labor (in the form of doctors and

nurses) is used in the health sector to generate improvements in both longevity and labor

force participation and/or productivity.

Our model economy exhibits the following demographic properties: We assume that

the total population is composed of different cohorts that can be distinguished by their

date of birth t0. Each cohort consists of a measure N(t0, t) of individuals at a certain point

in time t > t0. In line with Blanchard (1985) we assume that individuals face a constant

risk of death at each instant which we denote by µ. Due to the law of large numbers this

rate is equal to the fraction of the population dying at each instant. To fit the Romer

(1990) case, we assume that the population does not grow and hence that the birth rate

(being equivalent to the period fertility rate in such a setting) equals µ.6

Note that while reductions in the mortality rate, afforded by increasing levels of health

care, imply proportional reductions in the birth rate, this amounts to an accounting effect

rather than to changes in fertility decisions. As we show in Appendix A.1 for a constant

cohort fertility rate, i.e., a constant number of children over the life-course, a decrease in

mortality must imply a one-to-one decrease in period fertility. With increasing longevity,

6In the presence of population growth there would not be a long-run balanced growth path in the
Romer (1990) framework. Instead, we would have to use a semi-endogenous growth model in the spirit of
Jones (1995) as baseline framework. Doing so, however, would lead to the unrealistic (and from a modeling
perspective uninteresting) situation where only the positive growth effect of decreasing mortality is present
in the long run (through its impact upon the population growth rate), while the negative influences of
increases in taxes to finance health care (and thereby increases in the amount of labor used in the health
sector and decreases in the amount of labor used in the R&D sector) would vanish. Therefore we rely
on the more realistic model structure outlined here and note that a similar mechanism as the one we
describe would hold in the transition phase of semi-endogenous growth models. This could be illustrated
numerically which is not desired within the confines of this paper but on top of our future research agenda.
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individuals spread a constant number of births (for a constant single-sex population, in-

deed, a single birth) over a longer life-course. Statistically, this implies that fewer children

are born at each point in time and thus a lower birth rate. Indeed, this corresponds well

with the evidence compiled by demographers that the decline in period fertility rates ob-

served over the past decades does not necessarily imply a reduction in cohort fertility but

may rather be the effect of fertility postponement over a life-course of increasing duration

(see e.g., Bongaarts and Feeney, 1998; Bongaarts and Sobotka, 2012).

2.2 Consumption

Suppressing time subscripts, an individual belonging to the cohort born at t0 maximizes

her discounted stream of lifetime utility

U =

∫ ∞
t0

e−(ρ+µ)(s−t0) log(c)ds, (1)

where the mortality rate µ ≥ 0 augments the subjective time discount rate ρ > 0. Period

utility log(c) is derived from individual consumption, c, of the final good, the production

of which is described in Section 2.5. Individuals earn income from life-insured assets, from

the supply of their labor, and from dividends paid out by the intermediate goods sector.

Individuals do not receive and do not leave bequests. For the sake of a comprehensive ex-

position we follow Yaari (1965) and assume a perfect annuity market on which individuals

can insure themselves against the risk of dying with positive assets. The government levies

a tax on labor income, which is tantamount to social security contributions. In Subsection

2.4 we show how this tax is then used to finance the public share of health care. Indi-

viduals spend their income on consumption and for the purchase of private health care.

Consequently, the wealth constraint of an individual reads

k̇ = (r + µ− δ)k + (1− τ)w`+ d− c− pHσh, (2)

where k refers to the individual capital stock; r is the rental rate of capital; δ ≥ 0 is the

rate of depreciation; w` is the individual’s (annual) wage income, with w the wage rate and

` the individual’s inelastic annual labor supply; τ ∈ [0, 1] is the tax rate on labor income; d

is the income from dividends (net of new investments) in the intermediate goods sector; c

is consumption expenditure with the price normalized to one; and pHσh are private health

care payments, with pH the unit price, h the overall quantity of health care, and σ ∈ [0, 1]

the share of private finance. Utility maximization subject to the wealth constraint yields

the following standard Euler equation (for a derivation see Appendix A.2)

ċ

c
= r − ρ− δ,

stating that consumption grows if and only if the real rate of return on capital exceeds

the sum of the subjective time discount rate and the rate of capital depreciation.
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2.3 Aggregate capital stock and aggregate consumption

In our framework, agents are heterogeneous with respect to accumulated wealth, as older

agents have had more time to build up positive assets. In order to obtain the law of motion

for aggregate capital and the economy-wide (“aggregate”) Euler equation, we apply the

following aggregation rules across all cohorts alive at time t (cf. Heijdra and van der Ploeg,

2002):

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0, (3)

C(t) ≡
∫ t

−∞
c(t0, t)N(t0, t)dt0. (4)

By applying our demographic assumptions we can rewrite these rules as

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0, (5)

K(t) ≡ µN

∫ t

−∞
k(t0, t)e

µ(t0−t)dt0 (6)

because for a constant population each cohort is of size µNeµ(t0−t) at a certain point in

time t > t0.

Carrying out the calculations described in Appendix A.3 we arrive at the following

expressions for the law of motion of aggregate capital and for the aggregate Euler equation

K̇ = (r − δ)K(t)− C(t) + (1− τ)W (t) +D(t)− pHσH, (7)

Ċ(t)

C(t)
= r − ρ− δ − µ(ρ+ µ)

K(t)

C(t)
, (8)

where W (t), D(t) and H, respectively, describe aggregate labor income, aggregate (net)

dividends, and aggregate consumption of health care.7 Note that the aggregate Euler

equation differs from the individual Euler equation by the term µ(ρ+ µ)K(t)/C(t). This

term is correcting for the turnover of generations and basically takes into account that

older individuals, who are wealthier and who can therefore afford more consumption, are

constantly replaced by newborns without capital holdings who cannot afford that much

consumption. This process slows down aggregate consumption growth as compared to

individual consumption growth.

2.4 Health care

Following Schneider and Winkler (2010) we assume for the health care sector that labor

is converted into health care according to the following production function

hN = LH ,

7Aggregate dividends and health care payments are further characterized in Appendix A.5.
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where LH is aggregate employment in the health care sector, h is health care per capita,

and N denotes the size of the population. Thus, the consumption of health care per capita,

h = LH/N increases with the employment in the health care sector per capita. Here, we

note that the constraints LH ≤ L ≤ N with L being the size of the available labor force

place some upper bound hmax = L/N ≤ 1 on the per capita consumption of health care.

Intuitively, the provision of health care cannot be expanded beyond the point at which

the total labor force is employed in the health care sector. The mortality rate µ(h) is

decreasing in the (annual) level of health care per capita, h. Specifically, we assume

µ (0) = µ ∈ (0,∞) , µ (hmax) = µ ∈ [0, µ) , (9)

µ′ ≤ 0, µ′′ ≥ 0, µ′′′ ≤ 0, (10)

implying that health care lowers mortality from a maximum µ to some minimum µ ≥ 0,

corresponding to the maximum feasible level of health care hmax at which all available

labor is employed in the health care sector.8 We assume health care to be subject to

(weakly) diminishing returns. Apart from lowering mortality, health care also contributes

to a reduction in morbidity, which in our context allows individuals to increase their

effective labor supply per annum, ` (h) .9 Specifically, we assume

0 ≤ ` (0) ≤ ` (hmax) = hmax ≤ 1 (11)

`′ ≥ 0, `′′ ≤ 0, `′′′ ≥ 0. (12)

Thus, the labor supply per capita increases in the level of health care at (weakly) decreasing

returns. Assuming that individuals supply the same amount of labor regardless of their

age10 we can write total labor supply as11

L = ` (h)N.

It is then easy to verify that the constraint LH ≤ L ≤ N implies h ≤ ` (h) ≤ ` (hmax) =

hmax ≤ 1.12

Finally, consider the finance of health care. With σ ∈ [0, 1] denoting the share of private

finance in health care, the public share 1 − σ is financed by a tax on labor income that

is tantamount to a social security contribution. Altogether, this implies that aggregate

8For empirical evidence on the impact of health care on mortality see e.g. Cremieux et al. (1999), Filmer
and Pritchett (1999), Berger and Messer (2002), Thornton (2002), Lichtenberg (2004) and Cutler et al.
(2006).

9Healthier individuals provide more labor (per annum) and/or are more productive. See Rivera and
Currais (2004) for some evidence that current public health care spending has a positive impact on labor
productivity.

10This assumption is consistent with the assumption of an age-independent mortality rate.
11Naturally, at aggregate level ` (h) can be also interpreted as the share of the population that is able

to work a full time equivalent or as the average time at work, where individuals may differ in their labor
supply depending on whether or not they are healthy or sick.

12If ` (h) is a measure of productivity rather than participation, it is conceivable that ` (hmax) = hmax > 1.
We disregard this case without loss of generality.
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health expenditure, G, satisfies

wLH = G = pHσH + τW, (13)

where the equation on the LHS measures the expenditure on health care wLH = whN ,

while the equation on the RHS measures the composition of health care finance, with

pHσH = pHσhN the amount of private finance and τW = τw` (h)N the tax income.

For the sake of a concise exposition we assume here that the public health care budget is

balanced at each instant.13 Assuming perfect competition within the health care sector,

we have that pH = w, implying that we can rewrite the outer equalities in (13) to h =

σh + τ` (h), which solves for a tax rate τ = (1− σ)h/` (h) ∈ [0, 1] . As expected, the

tax is increasing in the provision of health care per capita, h, and in the share 1 − σ

that is financed publicly, but at the same time it is falling in the per capita supply of

labor. Having, thus, noted the financing mechanism, it will become evident in the course

of analysis that under our assumptions of (i) a competitive health care sector and (ii) a

non-distortionary tax, the mode of health care finance has no implications for economic

growth. Indeed the latter is only determined by the size of the health care sector, as

measured by h.

2.5 Production

The production side of the economy closely follows Romer (1990). Final goods Y , repre-

senting both consumption goods and (undifferentiated) capital inputs into the production

of intermediate goods, are produced according to

Y = L1−α
Y

∫ A

0
xαi di, (14)

where LY refers to labor used in final goods production, A is the technological frontier,

i.e., the “number” of differentiated machines available, xi is a measure of the quantity

of type-i machines used in final goods production, and α ∈ [0, 1] is the factor share of

intermediate inputs. Note that output of the final goods sector is equivalent to the GDP

of a country. Profit maximization and the assumption of perfect competition in the final

goods sector imply that factors are paid their marginal products such that

wY = (1− α)
Y

LY
, (15)

pi = αL1−α
Y xα−1i , (16)

where wY refers to the wage rate paid in the final goods sector and pi to prices paid for

intermediate inputs.

The intermediate goods sector is monopolistically competitive in the spirit of Dixit

and Stiglitz (1977). After an intermediate goods producer has purchased a blueprint, it

13Relaxing this assumption would not change our results qualitatively.
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can transform one unit of capital into one unit of the intermediate good, implying xi = ki.

Maximizing operating profits πi = (pi − r)ki = αL1−α
y kαi − rki yields prices of machines

pi =
r

α
, (17)

where 1/α is the markup over marginal costs (cf. Dixit and Stiglitz, 1977). Note that due

to symmetry we can now drop the index i. The aggregate capital stock is then equal to

the total quantity of intermediates, i.e., K = Ax, and aggregate production becomes

Y = (ALY )1−αKα, (18)

implying that technological progress is labor augmenting.

Similar to the central building block of the Romer (1990) model, the R&D sector

employs scientists to discover new blueprints. Depending on their number, LA, and their

productivity, λ, the production of blueprints evolves according to

Ȧ = λALA. (19)

Under perfect competition R&D firms maximize profits πA = pAλALA − wALA, with pA

representing the price of a blueprint. The first order condition pins down wages in the

research sector to

wA = pAλA. (20)

We immediately see that wages of scientists increase with the price for blueprints pA,

with research productivity λ, and with an expanding technological frontier A. The first

two factors also increase wages of scientists in relation to wages of workers in final goods

production and health care and hence they render R&D employment relatively more at-

tractive. Increases in the technological frontier, however, raise wages in all three labor-

employing sectors alike and consequently do not change the relative attractiveness of R&D

employment.

2.6 Market clearing and steady-state growth

Perfect labor mobility leads to an equalization of wages across those sectors that employ

labor: R&D, final goods, and health care. We can therefore insert (15) into (20) to obtain

the equilibrium condition

pAλA = (1− α)
Y

LY
. (21)

Under free entry into the intermediate goods sector, firms in the R&D sector can charge

prices of blueprints that are equal to the present value of operating profits in the interme-

diate goods sector because there is always a potential entrant willing to outbid any lower

price. We then have

pA =

∫ ∞
t

e−R(t,τ)π dτ, (22)
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where R(t, τ) =
∫ τ
t (r(s) − δ) ds, i.e., the discount rate is the market interest rate paid

for household savings. Via the Leibniz rule and the fact that prices of blueprints do not

change along a balanced growth path, we obtain

pA =
π

r − δ
. (23)

Using the expression of operating profits and (23) we can derive prices for blueprints as

(see Appendix A.4)

pA =
(1− α)αY

(r − δ)A
. (24)

Note that a higher interest rate, r−δ, reduces the price for a blueprint because it decreases

the present value of operating profits in the intermediate goods sector. Assuming that

labor markets clear, i.e., L = LA +LY +LH , where L = ` (h)N is aggregate labor supply

and where LH = hN is the employment in the health sector, we can then determine

employment in the final goods sector and in the R&D sector, respectively, by using (21)

and (24)14

LY =
r − δ
αλ

, (25)

LA = max

{
[` (h)− h]N − r − δ

αλ
, 0

}
. (26)

These two equations imply first that a decrease in the interest rate raises the number of

scientists and decreases the number of workers in the final goods sector. This is because

a lower interest rate drives up the price of a blueprint pA [see (24)] and, thus, the wages

of scientists [see (20)]. Second, an increase in the productivity of scientists λ raises their

wages relative to those in the final goods sector and thus induces labor to move from final

goods production into R&D. Third, an increase in the elasticity of intermediates in final

goods production, α, reduces the number of workers needed in the final goods sector and

thus tends to push employment toward the R&D sector. Fourth, an increase in the size of

the labor force N raises the number of scientists. Fifth, an increase in health care directly

raises the workforce available for R&D and/or production if and only if `′ > 1, i.e., if and

only if participation in the labor market (or per-capita supply of labor) grows by more

than one: Intuitively, the available labor force increases if for each worker switching into

the health care sector more than one (effective) workers can enter the work force due to

improvements in health.

Inserting (26) into (19) leads to the growth rate of the technological frontier

g =
Ȧ

A
= λLA = max

{
λ [` (h)− h]N − r − δ

α
, 0

}
, (27)

14It can be verified from the equilibrium dynamics (29) and (30) that r ≥ δ and, therefore, LY ≥ 0 must
be true: Suppose otherwise, then (29) implies g < 0, whereas (30) implies g > 0 and, thus, a contradiction.
By contrast, LA ≥ 0 is not always guaranteed. For instance, h = `

(
h
)

would trigger negative R&D
employment, LA < 0, which, of course, is not feasible.
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where the implied non-negativity constraint on the growth rate follows as R&D employ-

ment cannot be negative. Along a balanced growth path we know that Ẏ /Y = Ċ/C =

K̇/K = Ȧ/A, so that g also denotes the growth rate of output, consumption and capital.15

3 The growth impact of health care

In this section we analyze the impact of the health care sector on the balanced growth

path of an economy. Recall from Subsection 2.4 that health care per capita is given by

h = LH/N where h ∈ [0, hmax] with hmax = ` (hmax). For a closed economy capital

accumulation can be expressed as
·
K = Y − C − δK, i.e., total output of the final good is

either consumed or invested, with capital accumulation following as the investment net of

replacements due to depreciation (see also Appendix A.5). The dynamic system describing

our economy can then be written as

g =
r

α2
− ξ − δ, (28)

g = r − ρ− δ − µ (h) [ρ+ µ (h)]

ξ
, (29)

g = max

{
λ [` (h)− h]N − r − δ

α
, 0

}
, (30)

where we define ξ := C/K and note that Y/K = r/α2 (see Appendix A.4). The dynamics

are thus described by capital accumulation as in (28), by the Euler equation as in (29),

and by the growth of R&D output as in (30). The equations determine the interest rate

r, the consumption-capital ratio ξ and the economic growth rate g. Health care directly

affects the system through changes in the mortality rate, and, thus, in the generational

turnover and through changes in the workforce available for R&D. Note that the financing

of health care has no direct impact on the balanced growth system. Given that labor supply

is inelastic with respect to the net wage the tax itself constitutes a neutral redistribution of

resources from households to the government. Similarly, given perfect competition within

the health care sector, private payments balance out with the wage bill.

For the analysis to be non-trivial we assume in the following the existence of two values

h and h, satisfying 0 ≤ h < h < hmax, such that

h ∈
[
h, h

]
⇔ g > 0. (31)

As part of the Proof of Proposition 2 we will characterize this somewhat more precisely.16

15Note that since population growth is zero, per capita output, per capita consumption, per capita
capital and aggregate wages also grow at rate g.

16Note that by definition hmax = ` (hmax) it must be true that g |h=hmax < 0, implying immediately that
h < hmax.
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At this stage, we note that the interval
[
h, h

]
is non-empty if at least one h satisfies

[` (h)− h]N >
1

αλ

[
ρ+

µ (h) [ρ+ µ (h)]

ξ

]
.

This condition ensures that at least for one level of health care, the workforce available

for production and R&D exceeds the weighted sum of discount rate and generational

turn-over.17 We can now establish the following Proposition.

Proposition 1. (i) The system (28)-(30) describes a unique and stable balanced growth

path. (ii) Given positive growth as described by (31), the comparative static effects of an

increase in health care per capita, h, are given by

dr

dh
< 0 and

dξ

dh
< 0 if `′ ≤ 1

dg

dh
= λ

(
`′ − 1

)
N − 1

α

dr

dh
> 0 if `′ ≥ 1. (32)

Proof. See Appendix B.1.

Generally, greater provision of health lowers the interest rate and the consumption-

capital ratio if it does not generate a surplus of effective labor available for R&D and final

goods production (`′ ≤ 1). By contrast, the growth rate of GDP increases in the level of

health care if the additional provision does not generate a reduction in the effective labor

available for R&D and final goods production (`′ ≥ 1).

Remark 1. For h /∈
[
h, h

]
and, therefore, g = 0, it is readily verified that dr/dh < 0 and

dξ/dh < 0 [See (62) in the proof]. With zero R&D employment, LA = 0, an expansion of

the health care sector is necessarily pulling labor from final goods production. The resulting

increase in capital intensity implies both a reduction in the rental rate (and interest rate)

and a reduction in the consumption-capital ratio.

In the following we continue to focus on the interval h ∈
[
h, h

]
for which positive

growth g > 0 obtains. To understand in greater detail the impact of health care on the

growth path, it is instructive to consider in separate the impact through improvements in

productivity/labor participation, i.e., through `′ > 0, and through reductions in mortality,

i.e., through µ′ < 0. Consider first the case in which health care has an impact on effective

labor supply only, i.e., `′ > 0 = µ′, so that economic growth is affected only through

changes in the labor available for production and R&D. The following is readily verified

from (57)-(59) in the Proof of Proposition 1.18

Corollary 1. If `′ > 0 = µ′, i.e., if health care only has an impact on effective labor

supply, we have dr/dh ≥ 0, dξ/dh ≥ 0 and dg/dh ≥ 0 if and only if `′ ≥ 1.

17In the conventional Romer (1990) framework, where h = µ (h) = 0 this condition boils down to
`N > ρ (αλ)−1, i.e., the available labor force must exceed the weighted discount rate.

18Note that for µ′ = 0 we have X2h = 0.
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If an expansion of health care increases effective labor but has no impact on mortality,

then it boosts the interest rate, the consumption-capital ratio and the growth rate as

long as it creates a surplus of effective labor available for R&D and production. The net

expansion of available labor leads to an instantaneous increase in R&D employment and

output of blueprints, A. The latter triggers an increase in the number of intermediate

goods producers and, through the increase in competition, to an erosion of both the

profits π in the intermediate goods sector and of the price for blueprints, pA. At the same

time, the demand for additional capital that comes with the expanding production of

intermediate goods triggers an increase in the interest rate. A greater variety of machines

is now employed in final goods production, where the greater ’machine’ intensity induces

an increase in wages, wY . At the same time, the price erosion for blueprints triggers a

reduction in R&D wages, wA. The resulting wage differential wY − wA > 0 induces a

flow of labor from the R&D sector into final goods production up to the point at which

wages are equalized across sectors at a lower level, the latter reflecting the increase in

the overall supply of effective labor.19 At the same time, employment has increased in

both sectors, as we see from (19) together with (27), whereby g = λLA and, therefore,

dLA/dg = λ > 0; and from (25), whereby dLY /dr > 0. Finally, although the increase

in the interest rate induces individuals to save more, the output of final goods expands

by so much that, nevertheless, aggregate consumption increases relative to the level of

wealth. The simultaneous increase in aggregate consumption and savings indicates a clear

improvement in economic conditions. All of these effects reverse if the provision of health

care is expanded to a point at which its production requires more labor than is effectively

generated. In this case, workers are drawn into the health care sector from both the

R&D sector and final goods production. At the same time, the prices for blueprints

increase, stifling the production of both intermediate and final goods. The former triggers

a reduction in the interest rate, and the latter a reduction in the consumption-capital

ratio.

Now consider the scenario where health care has an impact on mortality only, i.e.,

`′ = 0 > µ′. The following is easy to verify.

Corollary 2. If `′ = 0 > µ′, i.e., if health care only has an impact on mortality, we have

dr/dh < 0, dξ/dh < 0 for all h ∈
[
h, h

]
and dg/dh > 0 if and only if dr/dh < −αλN .

If an expansion of health care lowers mortality but has no impact on the supply of

effective labor, then it always lowers the interest rate and the consumption-capital ratio,

while it increases the rate of economic growth if and only if the reduction in the interest rate

is sufficiently pronounced. Within this scenario, an expansion of health care always reduces

the effective labor available for R&D and production. Whether or not this stifles economic

growth, however, depends crucially on the impact of health care on the interest rate. Here,

we note that the reduction in mortality that is triggered by an expanding health care sector

leads to a decline in the turnover effect and, thus, to an increase in aggregate savings. This,

19This can be verified from (51) in Appendix A.4, where the normalized wage rate w/Y falls in r.
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in turn, leads to a reduction in (a) the aggregate consumption-capital ratio, and (b) the

interest rate, the latter implying a greater output by established producers of intermediate

goods and, thus, a more ’machine’ intensive production of final goods. At the same time,

the reduction in the interest rate implies an increase in the price for blueprints and, in

turn, an increase in the wage paid to R&D workers. This induces a flow of workers from

production into R&D up to the point that wages are equalized at a higher level. Hence,

the impact of an expanding health care sector on R&D employment is ambiguous: On the

one hand, available labor is shifted to the health care sector, implying a tendency toward

lower R&D employment; on the other hand, labor is induced to shift from production

into R&D, implying a tendency toward greater R&D employment. Indeed, the overall

effect on R&D employment and, thus, on technological progress is positive if and only if

dr/dh < −αλN .20 This condition is the more likely to be satisfied, the stronger is the

negative impact on the interest rate through the reduction in mortality (and generational

turnover), the larger is the labor share in final goods production, 1 − α, and the smaller

is the ’growth potential’, λN. A large labor share in final goods production implies high

employment LY = (r − δ)/αλ and, therefore, also a strong leverage on employment of

changes in the interest rate; a small ’growth potential’ implies a weak direct impact on

R&D production of an increase of employment within the health care sector.

Combining the effects through mortality and morbidity affords the general statement

in Proposition 1. As a more rigorous characterization, we can now establish the following

result.

Proposition 2. Given the assumptions in (10) and (12), there exists a unique level ĥg ∈
(0, hmax) at which the growth rate is maximized if the following set of conditions holds: (i)

either `′|h=0 ≥ 1 or µ′|h=0 sufficiently large in absolute value; and (ii) µ′|h=hmax sufficiently

close to zero.

Proof. See Appendix B.2.

Remark 2. A more precise condition for ’µ′|h=0 sufficiently large in absolute value’ and

’µ′|h=hmax sufficiently close to zero’, respectively, is given in the proof.

Economic growth is maximized at a unique level of health care, ĥg ∈ (0, hmax), if (i)

the first introduction of health care (i.e., at h = 0) guarantees a sufficient reduction in

mortality and/or a sufficient increase in effective labor; and (ii) if at the maximum feasible

level of health care (i.e., at h = hmax), the impact on mortality is sufficiently low. Indeed

both sets of conditions are plausible: As is easy to envisage, the returns to introducing a

health care sector into an economy are prone to be substantive, while decreasing returns

should be expected to result in ’flat of the curve’ medicine (cf. Fuchs, 2004) without any

sizable gains well before the full labor force is employed in health care.

Building on the findings in Corollaries 1 and 2 it is easy to establish the following.

20To see this, set `′ = 0 in (32).
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Corollary 3. Let (i) `′ |h=0 > 1, `′′ < 0; (ii) |µ′|, |µ′′| sufficiently small; and (iii) h = 0.

Then there exist ĥξ ∈
(
0, h
)

and ĥr ∈
(
0, h
)

at which the consumption-capital ratio and the

interest rate, respectively, are maximized. More specifically, we have ĥξ ≤ ĥr ≤ h |`′=1 ≤
ĥg with strict inequalities (equalities) if µ′ < 0 (µ′ = 0).

Proof. See Appendix B.3.

Provided that the impact of health care on mortality is not too strong relative to

its impact on effective labor supply, the interest rate and consumption capital ratio also

exhibit a hump-shaped relationship with health care. As is illustrated in Figure 2, when

increasing the level of health care from zero, the consumption-capital ratio peaks first,

followed by the peak of the interest rate.

h 
0 

g,r,ξ 

ξ 

g 

ĥg h

dξ/dh     >0         <0             <0 
dg/dh    >0         >0             <0 

r 

dLA/dh      >0        >0         <0 
dLY/dh       >0        <0         <0 

ĥr ĥξ 

Figure 2: Dependency of g, r and ξ on health care, when `′ |h=0 > 1, `′′ < 0 and |µ′| , |µ′′|
small.

If health care has an impact on mortality, µ′ < 0, both ξ and r peak at levels of h at

which a further increase still leads to an expansion of the labor force available for R&D

and production (i.e., where `′ > 1). This is owing to the negative impact of mortality

reductions on generational turnover, where the associated increase in aggregate financial

wealth pushes toward a lower aggregate consumption-savings ratio and a lower interest

rate (see Corollary 2). At the same time the shift of workers from final goods production

into R&D that is afforded by the reduction in the interest rate allows to sustain a positive

impact of h on economic growth even beyond the level h |`′=1 , at which the available labor

force is maximized. Only in the absence of mortality-related effects of health care (µ′ = 0)

do all three variables ξ, r and g peak at the same level h |`′=1 .
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According to Figure 2 the impact of health care on the distribution of the workforce

across the different sectors can be grouped into three distinct regimes: For low levels of

health care, h ∈
[
0, ĥr

]
, the boost in the effective labor supply afforded by an increase

in the health care sector allows an expansion of employment within all sectors: health

care, final goods production and R&D. Note that up to this point final-goods output

per unit of capital Y/K = r/α2 (see Appendix A.4) also grows. For intermediate levels

h ∈
[
ĥr, ĥg

]
the reduction in the interest rate triggered by a further expansion of public

health now leads to shift of employment from final goods production to R&D, the latter of

which continues to grow. Interestingly, final goods employment decreases on the interval[
ĥr, h |`′=1

]
although the effective labor available for R&D and production continues to

grow. On this interval the R&D sector benefits both from ’new’ effective units of labor

and from labor being transferred from production. Note that this effect follows from

the generation of additional capital due to reduced turnover. Similarly, the R&D sector

continues to grow even if for h ∈
[
h |`′=1 , ĥg

]
the health care sector is now employing more

effective labor than it is generating. Finally, for high levels h ∈
[
ĥg, hmax

]
employment is

drawn into the health care sector from both final goods production and R&D despite the

ongoing increase of the aggregate labor force L = ` (h)N .

4 Numerical assessment for the Euro area

In this subsection we calibrate the model, fitting it to the life expectancy e0 = µ(h)−1, labor

force participation l(h) and the growth experience over the last decade for the Euro area.

In so doing we address the questions as to what is approximately the growth-maximizing

size of the health care sector and how it compares to the actual size.

In our calibration we use the functions µ(h) = 0.00275h−1/2 and l(h) = 0.405 + 0.6h

because they satisfy the properties in (10) and (12) and imply life expectancy at birth e0

and labor force participation l ∈ [0, 1] consistent with the observed values. Furthermore,

we use the parameters displayed in Table 1, where 10-year average values over the years

2000 to 2009 were obtained for the population size and the health share (i.e., health

expenditures as a ratio of GDP). This has been done to get rid of short-run changes in

the health share that could be due to business-cycle fluctuations. Note that an observed

health share (G/Y ) of 9.78% implies that 4.79% of the population are employed in the

health sector.21

In order to assess the size of the health care sector at which economic growth is

maximized we plot in Figure 3 the growth rate and its derivative with respect to h. We

see that there is indeed an interior growth maximizing size of the health care sector at

h = 0.0250, i.e. at 2.5% of the total population working in health care. In expenditure

terms, this corresponds to a health share of 4.73% of GDP, which is roughly in line with

the data examined in Figure 1.

21Recall that h = LH/N measures health care employment relative to full population size.
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Table 1: Parameter values for calibration

Parameter Value Justification

ρ 0.015 Auerbach and Kotlikoff (1987)
α 0.33 Jones (1995)
δ 0.05 Full depreciation after 20 years
λ 6.41× 10−10 To fit growth experience in EA
N 323 040 881 World Bank (2012)
G/Y 0.0978 World Bank (2012)
h 0.0479 implied by equation (52)

in Appendix A.4

The actual values for g, r − δ, e0, l, and G/Y are displayed in Table 2 together with

the calibrated values and the values at the point at which economic growth is maximized.

To get rid of business-cycle influences, the actual values are again 10-year averages over

the years 2000 to 2009 obtained from data of the World Bank (2012). In case of interest

rates the 7-year average of long-term interest rates net of inflation over the years 2000

to 2006 were obtained using data from EUROSTAT. First, we note that our calibrated

data matches the actual data with considerable accuracy. Second, our results suggest

that developed economies like the Euro area have health sectors that are too large from

the perspective of maximizing economic growth. Third, however, we note that while the

current size of the health care sector does not even “cost” 0.02 percentage points in terms

of growth rates foregone, the gain in life expectancy of almost 22 years is sizable by all

accounts. Given that economic growth considerations can only be one aspect of health

policy, our numerical results suggest that concerns about the welfare costs of excessively

large health care sectors may be exaggerated. In the following section we provide a the-

oretical argument that a limited expansion of health care beyond the growth-maximizing

level may well constitute a Pareto-improvement.

Table 2: Simulation Results

Actual Calibrated Growth Maximizing

g in % 0.81 0.81 0.83
r − δ in % 2.24 2.37 2.23
e0 in years 79.45 79.56 57.54
l in % 43.64 43.37 42.00
G/Y in % 9.78 9.78 4.72
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Figure 3: The economic growth rate (panel (a)) and its derivative with respect to h (panel
(b)) for h ∈ [0, 0.15].

5 The welfare impact of health care

We conclude our analysis by considering the impact of an expanding health care sector on

the life-cycle utility of different cohorts. Following Saint-Paul (1992) we can express the

indirect life-cycle utility of a member of cohort t0 at time t ≥ t0 as

U(t0, t) =
log c(t0, t)

ρ+ µ
+
r − ρ− δ
(ρ+ µ)2

, (33)

where the first term reflects the discounted value of the utility stream from consumption

at current level c(t0, t) and where the second term reflects the discounted benefit from

changes in consumption over the remaining life-course. In Appendix A.3, equation (45)

we derive the consumption level

c(t0, t) = (ρ+ µ) [k(t0, t) + ω(t)] , (34)

with k(t0, t) denoting the financial wealth of a member of cohort t0 at time t, and

ω(t) =

∫ ∞
t

[(1− τ)w(s)`+ d(s)− pH (s)σh] e−(r+µ−δ)(s−t)ds

=

(
1− α2

)
Y (t)

N (r + µ− δ − g)
> 0, (35)
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denoting human wealth at time t (see Appendix A.6 for a derivation). Thus, at each

point in time consumption increases with the sum of financial wealth and human wealth,

and with the marginal propensity to consume, ρ + µ. Human wealth amounts to the

discounted stream of (expected) net income over the remaining life-course, which on a

balanced growth path can be expressed as a function of the GDP per capita at time t and

the ’net’ discount rate r+µ− δ− g > 0, where the inequality is readily verified from (29).

Similar to Saint-Paul (1992) we examine the effects on the life-cycle utility of the

various cohorts of an unanticipated policy change. Specifically, we consider how an unan-

ticipated and marginal “health care reform” dh (t) at time t = 0 affects the life-cycle utility

of (i) a member of the current generation born at t0 = 0; (ii) a member of a future cohort

born at t0 > 0; and (iii) a member of a ’past’ cohort born at t0 < 0. From (33) we obtain

for t ≥ 0

dU(t0, t)

dh (0)
=

−µ′

(ρ+ µ)2

[
log c(t0, t) +

2 (r − ρ− δ)
ρ+ µ

]
+

1

(ρ+ µ) c(t0, t)

dc(t0, t)

dh (0)
+

1

(ρ+ µ)2
dr

dh (0)
. (36)

Here, the RHS term in the first line reflects the change in life-cycle utility due to the

reduction in mortality. Assuming that representative life-cycle utility is non-negative, i.e.,

assuming that U(t0, t) ≥ 0, it follows that an expansion of life-expectancy unambiguously

raises life-cycle utility. The first term in the second line reflects the impact through changes

in the consumption level c(t0, t). The second term in the second line reflects the impact

of health-induced changes in the interest rate on consumption growth over the life-cycle.

This effect is negative if increases in the health care sector lead to a depression in the

interest rate and, thus, to reduced individual saving.

Noting that lack of anticipation implies that a health care reform at t = 0 has no

impact on the financial wealth k(t0, t) of an individual belonging to a cohort t0 < 0, we

obtain
dc (t0, t)

dh (0)
= µ′ [k(t0, t) + ω (t)] + (ρ+ µ)

dω (t)

dh (0)
, (37)

where22

dω (t)

dh (0)
=

ω (t)

r + µ− δ − g

[
1

Y (t)

dY (t)

dh (0)
− dr

dh (0)
− µ′ + dg

dh (0)

]
=

ω (t)

r + µ− δ − g

[
(t+ 1)

dg

dh (0)
− dr

dh (0)
− µ′

]
. (38)

Consumption c (t0, t) tends to decrease in the level of health care to the extent that lower

mortality reduces the individual’s propensity to consume, reflecting the need to stretch

consumption over an extended life-course. This effect is moderated by the impact of

22Note that for Y (t) = Y (0) egt, we obtain dY (t) /dh0 = tY (t) dg/dh0.
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health care on human wealth, the latter being ambiguous in its own right: By reducing

the effective discount rate a mortality reduction contributes toward boosting the present

value of human wealth at time t ≥ 0. However, further and possibly offsetting effects arise

through changes in the level and growth of GDP and through changes in the interest rate.

The various offsetting and indeterminate effects in (36) make it difficult to establish

a utility-maximizing level of health care. We therefore restrain ourselves to examining

the variation in the life-cycle utility of different cohorts for local changes in the level of

health care around the growth maximizing level ĥg. Considering the sign of the derivative

dU(t0, t)/dh (0)
∣∣∣h(0)=ĥg allows us to establish whether or not a cohort described by (i)

(0, 0) : current, (ii) (t0, t0) with t0 > 0 : future, and (iii) (t0, 0) with t0 < 0 : past, benefits

from a (small) expansion in the provision of health care beyond the growth-maximizing

level. Note here that distinctions arise with respect to the impact of health reform on the

consumption level c(t0, t). Specifically, we note that k(t0, t0) = 0 applies in (37) for cases

(i) and (ii), as newborn cohorts do not possess initially financial wealth; and that t = 0

and, therefore, dY (0) /dh (0) = 0 applies in (38) for cases (i) and (iii), as the impact on

life-cycle wealth of a reform at t = 0 is instantaneous for current and past cohorts.

We begin by considering the special case where for µ′ = 0 health care bears on pro-

ductivity only.

Proposition 3. For µ′ = 0 we obtain dU(t0, t)/dh (0)
∣∣∣h=ĥg = 0 for all t0 and t ≥ 0,

which corresponds to a maximum utility for all cohorts current, future and past.

Proof. See Appendix B.4.

If health care only bears on productivity/labor participation, then it is Pareto-efficient

to provide it at the level that maximizes economic growth. Setting µ′ = 0 in (36)-(38) we

obtain

dU(t0, t)

dh (0)
=

1

(ρ+ µ) c(t0, t)

dc(t0, t)

dh (0)
+

1

(ρ+ µ)2
dr

dh (0)

=
1

c(t0, t)

dω (t)

dh (0)
+

1

(ρ+ µ)2
dr

dh (0)

=
ω (t)

c(t0, t) (r + µ− δ − g)

[
(t+ 1)

dg

dh (0)
− dr

dh (0)

]
+

1

(ρ+ µ)2
dr

dh (0)
,

implying that the impact on life-cycle utility at (t0, t) is only shaped by changes in current

consumption as opposed to changes in future consumption. Furthermore, changes in cur-

rent consumption are exclusively driven by changes in human wealth. Recall from Corol-

laries 1 and 3 that for µ′ = 0 the growth-maximizing level of health care coincides with the

level of care that maximizes the interest rate (and at the same time the workforce avail-

able for R&D and production). But then it is immediate that dU(t0, t)/dh (0)
∣∣∣h(0)=ĥg =

dg/dh (0)
∣∣∣h(0)=ĥg = dr/dh (0)

∣∣∣h(0)=ĥg = 0. For h (0) < ĥg a further health-driven increase

in the growth rate contributes toward greater human wealth, and, thus, toward a greater
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level of current consumption. While the concomitant increase in the interest rate tends to

depress the level of current consumption, it can be verified (see the proof of Proposition 3

in Appendix B.4) that this effect is over-compensated in terms of life-cycle utility by the

increase in future consumption. These effects reverse, when additional health care leads

to a depression in economic growth and the interest rate for h (0) > ĥg.

Turning now to the general case where for µ′ < 0 health care also reduces mortality,

we can establish the following intermediate result for cohorts t0 ≤ 0 who are alive at the

introduction of the reform dh (0) > 0.

Lemma 1. If µ ≤ αξ then there exists a t̂0 ∈ (−∞, 0] such that (i)

dc(t0, 0)/dh (0)
∣∣∣h(0)=ĥg ≤ 0 if and only if t0 ≤ t̂0 (with strict equality only for t0 = t̂0);

and (ii) dU(t̂0, 0)/dh (0)
∣∣∣h(0)=ĥg ≤ dU(t0, 0)/dh (0)

∣∣∣h(0)=ĥg for all t0 ≤ 0 with a strict

inequality for all t0 6= t̂0.

Proof. See Appendix B.5.

Provided mortality is not too large23, there exists a cohort t̂0 for whom the level of

consumption c(t0, 0) is unaffected by a small increase in health care beyond the growth-

maximizing level, while it decreases for older cohorts (t0 < t̂0) and increases for younger

cohorts (t0 > t̂0). At the same time, cohort t̂0 is the one to receive the lowest marginal

benefit from an increase in health care. To understand these results, we note that the

impact of an unanticipated increase in health care at t = 0 on the consumption level

c(t0, 0) and the life-cycle utility U(t0, 0) of cohorts born prior to the reform (t0 < 0) is

modified by the presence of financial wealth k(t0, 0) > 0. It is readily established that

dk(t0, 0)/dt0 < 0, implying that later born cohorts have accumulated less wealth.

Setting dg/dh (0)
∣∣∣h(0)=ĥg = 0 in equation (38) it follows immediately that

dω/dh (0)
∣∣∣h(0)=ĥg > 0. Hence, an increase in health care from its growth maximizing

level tends to raise human wealth and, thereby, has a positive effect on the consumption

level c(t0, 0) that is offsetting the decline in the marginal propensity to consume. However,

as we also note from equation (37), the negative impact on consumption increases with

the level of financial wealth k(t0, 0), implying that for a given change in human capital,

financially wealthier cohorts have a greater tendency to reduce their consumption level.

As it then turns out, the level of consumption c(t0, 0) declines at the point of the reform

for older and wealthier cohorts (t0 < t̂0). Since consumption growth also declines for

dr/dh (0)
∣∣∣h(0)=ĥg < 0, it follows that all cohorts t0 ≤ t̂0 suffer an unambiguous reduction

in life-cycle consumption. For these cohorts, there is a clear trade-off between greater sur-

vival (quantity of life) against consumption (quality of life) (see e.g. Murphy and Topel,

2006; Hall and Jones, 2007). In contrast, younger and poorer cohorts (t0 > t̂0) are able

to raise their consumption level c(t0, 0) at the point of reform. As these cohorts, too,

23Note that the condition µ < αξ will typically hold. For our numerical analysis we have assumed

α = 1/3 and obtain µ
∣∣∣h(0)=ĥg

= 0.0179 and ξ
∣∣∣h(0)=ĥg

= 0.6185 (see Tables 1 and 2) implying that the

above inequality holds by an order of magnitude.
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are affected by lower growth in individual consumption, the impact on their life-cycle

consumption is ambiguous.

Let us now compare members of cohort t̂0 against their older and younger ’peers’. Al-

though suffering from greater reductions in life-cycle consumption, older cohorts (t0 < t̂0)

start with greater levels of consumption to begin with, c(t0, 0) > c(t̂0, 0), and therefore

experience greater direct gains from an expansion in life-expectancy. Due to their (rela-

tively) greater benefit from the boost in human wealth, younger cohorts (t̂0 < t0) do not

suffer as much as cohort t̂0 from reductions in life-cycle consumption. It then turns out

that members of the ’middle-aged’ cohort t̂0 are, indeed, least prone to benefit from an

increase in health care: They are too poor to benefit sufficiently from an extension of their

life-time, while at the same time they are too rich to benefit sufficiently from the increase

in human wealth.

We can now establish the main result of the welfare analysis.

Proposition 4. For µ′ < 0 we obtain (i) dU(t0, t0)/dh (0)
∣∣∣h(0)=ĥg > 0 for all t0 ≥ 0 if

log c(t0, t0) ≥ 0; and (ii) dU(t0, 0)/dh (0)
∣∣∣h(0)=ĥg > 0 for all t0 < 0 if log c(0, 0) ≥ 0 and

g
∣∣∣h(0)=ĥg sufficiently large.

Proof. See Appendix B.6.

If health care contributes toward lowering mortality, the current and future cohorts

(t0 ≥ 0) stand to gain from an expansion of the health care sector beyond its growth

maximizing level if they experience non-negative period utility from consumption (i.e.,

if log c(t0, t0) ≥ 0). For h (0) ≤ ĥg, improvements in survival contribute toward life-

cycle utility over and above the growth-driven increase in human wealth. Intuitively, at

h (0) = ĥg it seems efficient to incur a second-order loss in human wealth due to less

than maximal growth in exchange for a first-order gain in life-expectancy [cf. RHS of

the first-line in (36)]. Nevertheless, the finding that an increase in health care beyond

the growth-maximizing level is always beneficial for current and future cohorts is by no

means a foregone conclusion: This is because of the first-order loss from a reduction in

consumption growth and potentially from a reduction in life-cycle consumption.24 As our

analysis reveals, however, at the point at which growth is maximized, h (0) = ĥg, the trade-

off goes unambiguously in favor of survival, so that current and future cohorts benefit from

an increase in health care beyond the growth-maximizing level. Cohorts differ, however,

in their propensity to benefit. In the presence of economic growth, future cohorts born at

t0 > 0 tend to benefit from greater human wealth at the point of their birth, ω(t0) > ω(0),

allowing them to sustain a greater level of baseline-consumption c(t0, t0) > c(0, 0). While

this increases their marginal benefits from an extended life-time, at the same time they

suffer from a greater negative impact on their human wealth of reductions in the growth

rate below the maximum, where (t0 + 1) dg/dh (0) < dg/dh (0) < 0 in (38). Hence, while

24Indeed, for µ→ αξ we have dc (t0, t0) /dh (0) = 0 for all t0 ≥ 0 so that these cohorts, too, would suffer
a reduction in life-cycle consumption.
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the current and future generations all stand to benefit from some increase in health care

beyond the growth-maximizing level, they are prone to disagree about the extent.

When considering the impact of an unanticipated increase in health care at t = 0 on

the life-cycle utility of cohorts (t0 < 0) born prior to the reform, it is sufficient to focus on

cohort t̂0 ∈ (−∞, 0] [Lemma 1 part (ii)]. Indeed, when considering a Pareto-improvement

one would need to verify that the middle-aged cohort t̂0 who is least prone to benefit from

the reform does not experience a loss in life-cycle utility. We show in Appendix B.6 that

cohort t̂0 experiences a marginal change in life-cycle utility of

dU(t̂0, 0)

dh (0)

∣∣∣h(0)=ĥg =
−µ′ log c(t̂0, 0)

(ρ+ µ)2
− 2µ′ (r − ρ− δ)

(ρ+ µ)3
+

1

(ρ+ µ)2
dr

dh (0)

∣∣∣h(0)=ĥg ,
where the benefits from an expanding life-time (the first two terms on the RHS) trade-off

against the reduction in individual consumption growth and, thus, in future consumption

(the third term). This trade-off illustrates the ambiguous role of responses in the interest

rate to expansions in longevity. On the one hand, we have seen that falling interest rates

help to sustain economic growth by boosting R&D incentives. On the other hand, by curb-

ing individuals’ saving incentives a falling interest rate leads to less consumption growth

and, for a given level of current consumption, to a reduction in life-cycle consumption. At

individual level, this undermines the very return to increases in life-expectancy.25 These

arguments notwithstanding, even cohort t̂0 benefits from an increase in health care if the

(maximized growth) rate g
∣∣∣h(0)=ĥg is sufficiently large. Intuitively, a high growth rate

implies a high interest rate, and, therefore, high rates of individual consumption growth,

r
∣∣∣h(0)=ĥg − ρ− δ > 0, to begin with. In this case, the direct benefits from lower mortality

overcompensate the reduction in life-time consumption.

Corollary 4. If the conditions in Proposition 4 are satisfied, then an increase in the

provision of health care beyond its growth-maximizing level is Pareto-optimal.

This corollary follows immediately, as all generations - past, current, and future - ben-

efit from an expansion of the health care system beyond its growth-maximizing level. The

degree to which health care can be expanded without harming any generation is more dif-

ficult to determine, as cohorts not only differ in their propensity to benefit dU(t0, t)/dh (0)

at h (0) = ĥg but also in the rate at which marginal utility declines (toward a negative level

eventually) as growth rates deteriorate for h (0) > ĥg. This notwithstanding, the result

stated in the Corollary is strong in as far as it obtains under the assumption that past gen-

erations t0 < 0 are unable to anticipate the health care reform at t = 0. These generations

are subject, therefore, to a jump in their consumption at t = 0, militating against the

desire to smooth consumption. Indeed, in anticipation of the reform these cohorts would

likely choose a different pattern of capital accumulation on the interval [t0, 0] , affording

25Incidentally, the above trade-off provides another rationale for why models with endogenous interest
rates should be considered. In a Romer (1986) type economy with a constant interest rate a small increase
in health care from the growth-maximizing level would unambiguously benefit all cohorts.

27



them a greater propensity to benefit from the increase in h (0) . Allowing for anticipation

would therefore only strengthen our result. We conclude by pointing out that the result

in the Corollary is also rather plausible. Using the parameters and variables from our

numerical example in the previous section (see Tables 1 and 2) to calculate the critical

value for the growth rate as given by (73) in Appendix B.6 we obtain that generation t̂0

benefits from a marginal increase in h (0) if g
∣∣∣h(0)=ĥg > 3.27 × 10−4. This condition is

clearly satisfied, as we obtain a maximal growth rate of g
∣∣∣h(0)=ĥg = 8.3× 10−3 (as stated

in Table 2).

6 Conclusions

We have developed an R&D-based economic growth model featuring a Blanchard-Yaari

OLG structure with a health-dependent mortality rate. Our model provides an explanation

for the hump-shaped relationship between economic growth and health care based on

the allocation of labor across three sectors: health care, final goods production (i.e.,

manufacturing) and R&D. If, by raising productivity and/or labor participation, health

care contributes toward expanding the effective workforce that is available for R&D, then

uncontroversially its expansion has a positive impact on economic growth. However, our

analysis shows that even if an expansion of health care diverts labor away from productive

sectors, which empirically is true for many countries, it may nevertheless enhance growth

by inducing a flow of workers from manufacturing into R&D. The rationale for such a

redirection of labor is that the level of accumulated wealth increases with a health-induced

increase in longevity, triggering a drop in the interest rate and an increase in capital

(machine) intensity in manufacturing. Both of these effects imply that the intermediate

production of machines and, in turn, the design of blueprints becomes more profitable. The

relative increase in wage rates paid within the R&D sector then attracts labor away from

manufacturing. Hence, by pushing toward a greater capital intensity of manufacturing,

an expansion of health care may stimulate or at least sustain R&D-driven growth. This

notwithstanding, we show that if the health sector becomes too large it will divert labor

away not only from manufacturing but also from R&D and, therefore, ultimately stifle

growth.

While a numerical example suggests that the provision of health care within the Euro

area is excessive from a growth-maximizing point of view, this need not necessarily be

detrimental to economic welfare. We show that an expansion of health care beyond its

growth-maximizing level may be Pareto-optimal even if it leads to a first-order reduction

in consumption for some cohorts. A sufficient condition for Pareto-optimality is that

the economic growth rate and, implicitly, the growth rate of individual consumption is

sufficiently high to begin with. Finally, our analysis gives some guidance as to what are

the trade-offs faced by particular cohorts: On the one hand, older and wealthier cohorts

tend to secure a greater direct benefit from an expansion in longevity, owing to the greater

level of consumption and period utility they obtain; on the other hand, they benefit to a
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lesser extent from a health-driven increase in human wealth and, therefore, they are more

prone to experience larger cuts to their life-cycle consumption. Therefore, the trade-off

between quantity of life (longevity) and quality of life (consumption) is increasing with age.

This notwithstanding, it is the middle-aged cohorts who are the least prone to benefit from

an expansion of health care: Having accumulated intermediate levels of financial wealth,

these cohorts are too poor to benefit extensively from an increase in longevity, while at

the same time they are too rich to benefit from an increase in human wealth.

From a policy-perspective our model implies that concerns about negative growth

effects of an expanding health care sector may be exaggerated. This is first because an

expanding health-care sector may be an engine of technological progress even if it diverts

otherwise productive labor resources. Second, there are good grounds to believe that even

if health care has expanded to levels at which it is harmful to economic growth, this may

still be socially valuable as part of an optimal trade-off between quantity of life (longevity)

and quality of life (consumption). For a policy-maker with distributional concerns and/or

with concerns about enlisting political support, it is important to understand how the

benefits of additional health care are distributed across generations. Our analysis suggests

that a policy-maker who is interested in unanimous support and/or worried about those

with the greatest potential to lose out from an increase in health care, should focus on

cohorts of intermediate age and with intermediate levels of financial wealth.

We acknowledge that our model is highly stylized on a number of important dimensions:

First, it assumes away the distortions in the provision and finance of health care that

feature so prominently in most analyses on the topic. In particular, we assume that

(i) there are no distortions from taxation, that (ii) health care providers do not garner

any rents from monopoly power or from regulatory imperfections, and (iii) we ignore

inefficiencies in the individual consumption of health care. Distortionary effects from

taxation should be relatively straightforward to incorporate and understand: Here labor

participation would not only vary positively with health care but also negatively with the

tax rate, implying a net impact of health care that would likely to be positive at low

levels of care and taxation but then shift to negative from some point. This would imply

that from some point onwards an expansion of the health care sector would not only divert

labor away from productive uses but also, potentially, reduce the aggregate supply of labor.

While this would clearly indicate that growth is maximized at a lower level of care, we do

not feel that any of our substantive results would change. Similarly, we would not expect

that the presence of market power in the health care sector would change much unless

we were to consider the explicit choice of health care by individuals. In this case market

power would imply too low a demand for health care, whereas health insurance and/or

longevity-related moral hazard would imply the opposite. Finally, individuals would fail to

internalize the impact of health care on economic growth. While longevity-related moral

hazard and the failure to internalize growth effects are analyzed by Schneider and Winkler

(2010), there is clear scope for additional study of imperfections within a Romer (1990)

set-up.
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Second, our modeling of the health care sector is rudimentary. While we believe

that our focus on labor as the main input is broadly in line with empirical reality (cf.

Pauly and Saxena, 2012), clearly we are abstracting from other inputs, and in particular

from medical technology. Here, an integration of the health production function in van

Zon and Muysken (2001), where health is produced from human capital (= labor) and

a range of available technologies, could serve as a useful starting point to understand

R&D incentives and technological progress along two margins: conventional production

and health care. Furthermore, we have treated health care as a composite output that

contributes toward lowering mortality and morbidity alike. In reality, of course, health care

is a highly differentiated good with many services affecting either mortality or morbidity

but not both. Similarly, publicly and privately provided care may constitute imperfect

substitutes or even complements (see e.g. Bhattacharya and Qiao, 2007).

Third, our results are very much based on a comparative static variation in the level of

health care. Similar to most of the analysis based on Romer (1990) this is missing out on

the transitory dynamics. In particular when considering the impact of health care reform

such an analysis would be valuable. Finally, the focus of our analysis on the impact of

health care on economic growth ignores the reverse causality from income to health. The

latter is considered by Hall and Jones (2007) but, of course, it would be fruitful to examine

both directions within one and the same framework. We reserve these considerations for

future research.
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Appendix

A Derivations

A.1 Relationship between fertility and mortality

Our demographic assumptions imply that the size of the population at a given point in

time is

N(t) = N(−∞)e(β−µ)t =

∫ t

−∞
βN(−∞)eβt0e−µtdt0,

where β and µ are the period fertility and mortality rates, respectively and where N(−∞)

denotes the size of the population at the origin. Let m denote the number of children an
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individual desires to have over her life cycle (i.e., the cohort fertility). Then we have

m =

∫ ∞
0

βe−µtdt

⇔ β =
m∫∞

0 e−µtdt
=

m

[−µ−1e−µt]∞0
= mµ.

Consequently,
∂β

∂µ
= m.

But then in case of zero population growth, where m = 1, we have that period fertility β

changes one to one in response to changes in µ.

A.2 The individual Euler equation

The current value Hamiltonian is

H = log(c) + ν [(r + µ− δ)k + (1− τ)w`+ d− c− pHσh]

with ν denoting the costate variable. The first order conditions are:

1

c
= ν (39)

ν̇ = (ρ+ δ − r)ν. (40)

Taking the time derivative of (39) and plugging it into (40) yields

ċ

c
= r − ρ− δ, (41)

which is the individual Euler equation.

A.3 Aggregate capital and aggregate consumption

Differentiating (5) and (6) with respect to time yields

Ċ(t) = µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0, (42)

K̇(t) = µN k(t, t)︸ ︷︷ ︸
=0

−µK(t) + µN

∫ t

−∞
k̇(t0, t)e

−µ(t−t0)dt0. (43)

Using (2) and (43) it follows that

K̇(t) = −µK(t)

+ µN

∫ t

−∞
[(r + µ− δ)k(t0, t) + (1− τ)w(t)`+ d(t)− c(t0, t)− pH (t)σh] e−µ(t−t0)dt0

= (r − δ)K(t)− C(t) + (1− τ)W (t) +D(t) + pH (t)σH
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which is the aggregate law of motion for capital with W (t) = w(t)`N denoting aggregate

wage income, D(t) = d(t)N being aggregate dividend payments, and H = hN denoting

aggregate health consumption. Reformulating an agent’s optimization problem subject to

its lifetime budget restriction yields the optimization problem

max
c(t0,τ)

U =

∫ ∞
t

e(ρ+µ)(t−s) log(c(t0, s))ds

s.t. k(t0, t) +

∫ ∞
t

[(1− τ)w(s)`+ d(s)− pHσh] e−R
A(t,s)ds =

∫ ∞
t

c(t0, s)e
−RA(t,s)ds,

(44)

where RA(t, s) =
∫ s
t (r(v) + µ− δ)d v. The FOC is

1

c(t0, s)
e(ρ+µ)(t−s) = ν(t)e−R

A(t,s).

In period (s = t) we have

c(t0, t) =
1

ν
.

Therefore we can write

c(t0, t)e
(ρ+µ)(t−s) = c(t0, s)e

−RA(t,s).

Integrating and using the lifetime budget constraint given in the optimization problem

(44) yields

c(t0, t)

ρ+ µ

[
−e(ρ+µ)(t−s)

]∞
t

= k(t0, t) +

∫ ∞
t

[(1− τ)w(s)`+ d(s)− pH (s)σh] e−R
A(t,s)ds︸ ︷︷ ︸

ω(t)

⇔ c(t0, t) = (ρ+ µ) [k(t0, t) + ω(t)] , (45)

where ω(t) refers to human wealth of individuals consisting of the lifetime income of

wages and dividends net of taxes and private health care payments. Human wealth does

not depend on the date of birth because of the assumed lump-sum nature of dividends and

the assumption that productivity is age independent. Therefore, optimal consumption in

the planning period is proportional to total wealth with a marginal propensity to consume

of ρ+ µ. Aggregate consumption evolves according to

C(t) = µN

∫ t

−∞
eµ(t0−t) (ρ+ µ) [k(t0, t) + ω(t)] dt0

= (ρ+ µ) [K(t) + Ω(t)] , (46)
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where Ω(t) is aggregate human wealth. Note that newborns do not own capital because

there are no bequests. Therefore

c(t, t) = (ρ+ µ)ω(t) (47)

holds for each newborn individual and each newborn cohort, respectively. Combining (41),

(42), (46) and (47) yields

Ċ(t) = [µ (ρ+ µ) Ω(t)− µ (ρ+ µ) [K(t) + Ω(t)]] + (r − ρ− δ)C(t) (48)

⇔ Ċ(t)

C(t)
= r − ρ− δ − µ (ρ+ µ)

K(t)

C(t)
= r − ρ− δ − µC(t)− c(t, t)N

C(t)

which is the aggregate Euler equation that differs from the individual Euler equation by

the term −µ [C(t)− c(t, t)N ] /C(t) ∈ [−µ, 0].

A.4 Useful relationships

Using (17), (16), and (18) together with K = Ax we obtain

π = (pi − r)x = (1− α) pix

= (1− α)αL1−α
Y xα =

(1− α)αY

A
. (49)

Substituting into (23) then gives (24) as reported in Section 2.5.

Using (17), (16) and (18) together with x = K/A we obtain

r = αp = α2 Y

K
,

⇔ Y

K
=

r

α2
. (50)

Using (20), (21) and (25) we obtain

w = pAλA =
(1− α)αY λ

r − δ
. (51)

From (13) we obtain

G

Y
=
pHσH + τW

Y
=

(σh+ τ`)wN

Y
=

[σh+ (1− σ)h]wN

Y
=

(1− α)αλNh

r − δ
, (52)

where the second equality follows when recalling that pH = w under perfect competition;

where the third equality follows when recalling that τ = (1− σ)h/`; and where the fourth

equality follows when substituting from (51).
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A.5 Dynamics of aggregate capital stock

We obtain the law of motion for the aggregate capital stock either from the goods market

equilibrium Y = C + I = C + δK +
·
K or from the law of motion for aggregate wealth

·
K = (r − δ)K + (1− τ)W +D − C − pHσH

= (r − δ)K + [1− (1− σ)h/`]W +D − C − wσH

= (r − δ)K + w (LA + LY ) +D − C

= (r − δ)K + w (LA + LY ) +Aπ − pA
·
A− C

= (r − δ)K + wLY +Aπ − C

= Y − δK − C, (53)

where we observe pH = w, τ = (1− σ)h/` and [1− (1− σ)h/`]W−wσH = w (1− h/`)L−
wσh (N − L/`) = w(LA + LY ). Furthermore, dividends (net of new investment) are

given by D = Aπ − pA
·
A. Since pA

·
A = wLA from (19) and (20), GDP then follows as

Y = rK+wLY +Aπ, where Aπ are aggregate rents paid to the monopolistic intermediate

sector.

A.6 Human wealth

Rewriting the definition of human wealth in (45) for a balanced groth path, we obtain

ω(t) = N−1
∫ ∞
t

[(1− τ)W (s) +D(s)− pH (s)σH] e−(r+µ−δ)(s−t)ds

= N−1
∫ ∞
t

[w (s)LY (s) +A (s)π (s)] e−(r+µ−δ)(s−t)ds

= N−1
∫ ∞
t

(
1− α2

)
Y (s) e−(r+µ−δ)(s−t)ds

= N−1
∫ ∞
t

(
1− α2

)
Y (t) e−(r+µ−δ−g)(s−t)ds,

where the second equality follows in analogy to the calculation of
·
K in (53) (fifth line),

where the third equality follows when substituting from (15) and (49), and where the last

equality follows since Y (s) = Y (t) eg(s−t). Integrating out the last expression gives the

second line in (35).
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B Proofs

B.1 Proof of Proposition 1

Consider first, the case where g > 0. Rewriting the equilibrium system (28)-(30) to

X1 (r, ξ, g) = − r

α2
+ ξ + δ + g = 0, (54)

X2 (r, ξ, g) = −r + ρ+ δ +
µ(ρ+ µ)

ξ
+ g = 0, (55)

X3 (r, ξ, g) = λ [` (h)− h]N − r − δ
α
− g = 0. (56)

The determinant of the associated Jacobian is given by ∆ := − (1 + α)α−2 (α−X2ξ) < 0,

where X2ξ = −µ(ρ + µ)ξ−2 < 0. Together with the negative trace, this guarantees the

existence of a unique and stable balanced growth path. Applying the implicit function

theorem we obtain the comparative statics

dr

dh
=
− [(1−X2ξ)λ (`′ − 1)N +X2h]

∆
, (57)

dξ

dh
=
− (1 + α) [(1− α)λ (`′ − 1)N +X2h]

∆α2
, (58)

dg

dh
=
−
[(
α2 −X2ξ

)
λ (`′ − 1)N − αX2h

]
∆α2

, (59)

with X2h = µ′(ρ+ 2µ)ξ−1 < 0 and X2ξ < 0 and ∆ < 0 as given above. The signs of the

derivatives reported in the Proposition can then be verified from (57)-(59). Furthermore,

it is readily checked from (56) that we can equally write dg/dh = λ (`′ − 1)N−(1/α)dr/dh

as reported in the Proposition.

Consider now, the case where g = 0. In this case, the equilibrium is described by the

system

X1 (r, ξ, 0) = − r

α2
+ ξ + δ = 0, (60)

X2 (r, ξ, 0) = −r + ρ+ δ +
µ(ρ+ µ)

ξ
= 0, (61)

the determinant of which is given by ∆0 = 1 − α−2X2ξ > 0. Together with the negative

trace, this guarantees the existence of a unique and stable equilibrium at g = 0. For this

case, we obtain the comparative statics

dr

dh
= α2 dξ

dh
=
X2h
∆0

< 0. (62)
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B.2 Proof of Proposition 2

Define

φ (h) : =
(
α2 −X2ξ

)
λ
(
`′ − 1

)
N − αX2h

=
[
α2 + µ(ρ+ µ)ξ−2

]
λ
(
`′ − 1

)
N − αµ′(ρ+ 2µ)ξ−1. (63)

For the case h ∈
[
h, h

]
with g > 0, it is then readily verified from (59) that dg/dh > 0⇔

φ (h) > 0. Consider now h /∈
[
h, h

]
implying that X3 (r, ξ, 0) = λ [` (h)− h]N−(r−δ)/α ≤

0. For this case, we obtain dX3 (r, ξ, 0) /dh = λ (`′ − 1)N − (1/α)dr/dh. Inserting from

(62) and rearranging terms, it is easy to verify that dX3 (r, ξ, 0) /dh > 0⇔ φ (h) > 0.

In what follows we establish a set of properties of the function φ (h) allowing us to

determine a unique level ĥg ∈
[
h, h

]
for which the growth rate is maximized. Specifically,

we will establish that φ (h) > 0 for h ∈
[
0, ĥg

)
and φ (h) < 0 for h ∈

(
ĥg, hmax

]
. While

this implies the concavity of g > 0 on the interval
[
h, h

]
, it also implies that an increase

(decrease) in h on the interval [0, h) (on the interval
(
h, hmax

]
) will eventually lead to

g > 0.

From (63) we obtain

φ (0) > 0⇔ −µ′ |h=0 > Z (0)λN
(
1− `′ |h=0

)
, (64)

φ (hmax) < 0⇔ −µ′ |h=hmax < Z (hmax)λN
(
1− `′ |h=hmax

)
, (65)

with

Z (h) :=
α2ξ + µ (ρ+ µ) ξ−1

α (ρ+ 2µ)
(66)

implying the condition that |µ′|h=0 be sufficiently large and |µ′|h=hmax be sufficiently small,

respectively. Consider the RHS in (64). First, as is readily verified, the expression is

negative if 1 ≤ `′ |h=0 , implying that the condition in (64) is satisfied for any −µ′ |h=0 > 0.

Furthermore, it can be verified that Z (0) is finite. This is evident for µ < ∞, as this

also implies ξ |h=0 ∈ (0,∞) . Consider, thus, the limit µ→∞. First, we note that in this

case the full equilibrium system (54)-(56) implies lim
µ→∞

g |h=0 < 0. By contradiction, as-

sume lim
µ→∞

g |h=0 > 0. From (56) this implies ∞ > λN ≥ λ` (0)N >

(
lim
µ→∞

r |h=0 − δ
)
/α

and, therefore, lim
µ→∞

r |h=0 <∞. But then from (55) it must be true that lim
µ→∞

ξ |h=0 =∞,

which together with lim
µ→∞

r |h=0 <∞ generates a contradiction in (54). We therefore need

to consider the boundary solution with lim
µ→∞

g |h=0 = 0. Substituting now from (60) and

(61) into (66) we obtain

lim
µ→∞

Z (0) =

2 lim
µ→∞

r |h=0 −
(
1 + α2

)
δ − ρ

α (ρ+ 2µ)
.

Now consider lim
µ→∞

Z (0) , where lim
µ→∞

r |h=0 = ∞. Using l’Hospital’s rule and observing
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(62) we obtain

lim
µ→∞

Z (0) =
2dr|h=0

dµ

2α
=

1

α

(ρ+ 2µ)

(
lim
µ→∞

ξ |h=0

)−1
1− α−2 lim

µ→∞
X2ξ |h=0

=

α (ρ+ 2µ)

(
lim
µ→∞

ξ |h=0

)−1
α2 + µ (ρ+ µ)

(
lim
µ→∞

ξ |h=0

)−2 =

(
lim
µ→∞

Z (0)

)−1

and, therefore, lim
µ→∞

Z (0) = 1, which is obviously finite.

Now consider the RHS in (65). Since 1 > `′ |h=hmax , the inequality is always satisfied

for −µ′ |h=hmax → 0 if

Z (hmax) =
α2ξ |h=hmax + µ

(
ρ+ µ

)
(ξ |h=hmax )−1

α
(
ρ+ 2µ

) > 0.

This is true as µ ≥ 0 implies ξ |h=hmax ∈ (0, 1) .

Given φ (0) > 0 > φ (hmax), the continuity of φ (h) implies the existence of at least one

root. From (63) we obtain the derivative

φ′ (h) =
(
α2 −X2ξ

)
λ`′′N − αµ′′(ρ+ 2µ)ξ−1

−X2hξ
−1λ

(
`′ − 1

)
N − 2αξ−1

(
µ′
)2

+
[
2X2ξλ

(
`′ − 1

)
N + αX2h

]
ξ−1

dξ

dh
,

which generally cannot be signed without ambiguity. Evaluating this expression at some
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root ĥ := argh {φ (h) = 0} we obtain

φ′
(
ĥ
)

=
(
α2 −X2ξ

)
λ`′′N − αµ′′(ρ+ 2µ)ξ−1

+X2hξ
−1λ

(
`′ − 1

)
N − 2αξ−1

(
µ′
)2

+
(
α2 +X2ξ

)
ξ−1λ

(
`′ − 1

)
N
dξ

dh

∣∣
h=ĥ

=
(
α2 −X2ξ

)
λ`′′N − αµ′′(ρ+ 2µ)ξ−1

+X2hξ
−1λ

(
`′ − 1

)
N − 2αξ−1

(
µ′
)2

+
(
α2 +X2ξ

)
ξ−1α−1

[
λ
(
`′ − 1

)
N
]2

=
(
α2 −X2ξ

)
λ`′′N − αµ′′(ρ+ 2µ)ξ−1

−2αξ−1
{(
µ′
)2 − [λ (`′ − 1

)
N
]2}

= αX2−1h
(
`′ − 1

)−1
`′′ − αµ′′(ρ+ 2µ)ξ−1

−2αξ−1
{(
µ′
)2 − [λ (`′ − 1

)
N
]2}

=
α

ξ (`′ − 1)

{
(ρ+ 2µ) [µ′`′′ − µ′′ (`′ − 1)]

−2 (`′ − 1)
{

(µ′)2 − [λ (`′ − 1)N ]2
} } . (67)

Here, the first equality follows from αX2h =
(
α2 −X2ξ

)
λ (`′ − 1)N ; the sec-

ond equality follows when observing that dξ/dh
∣∣
h=ĥ

= −λ(`′−1)N
α ; the third equality

follows when observing that X2hξ
−1λ (`′ − 1)N +

(
α2 +X2ξ

)
ξ−1α−1 [λ (`′ − 1)N ]2 =[(

α2 −X2ξ
)

+
(
α2 +X2ξ

)]
ξ−1α−1 [λ (`′ − 1)N ]2 = αξ−1 [λ (`′ − 1)N ]2 ; the fourth

equality follows when observing, again, that
(
α2 −X2ξ

)
λN = αX2−1h (`′ − 1)−1; and

the final equality follows when using X2h = µ′(ρ + 2µ)ξ−1 and then collecting terms.26

We prove now that the assumptions (12) and (10) imply the existence of exactly one

root ĥ ∈ (0, 1) at which φ
(
ĥ
)

= 0 and φ′
(
ĥ
)
< 0. We begin by noting that

φ (0) > 0 > φ (hmax) implies an odd number of roots, m ∈ {1, 3, 5, 7, ...}, where

φ′
(
ĥ1

)
< 0 and φ′

(
ĥm

)
< 0 must be true. We can now prove that m = 1 by con-

tradiction. Thus, suppose m > 1 and consider the root m − 1, with ĥm−1 < ĥm.

By construction, it must then be true that φ′
(
ĥm−1

)
> 0. Now define φ̂

(
ĥ
)

:=

(ρ+2µ) [µ′`′′ − µ′′ (`′ − 1)]−2 (`′ − 1)
{

(µ′)2 − [λ (`′ − 1)N ]2
}

and observe from (67) that

sgnφ′
(
ĥ
)

= −sgnφ̂
(
ĥ
)
.27 Thus, φ′

(
ĥm−1

)
> 0 implies φ̂

(
ĥm−1

)
< 0. Furthermore, we

have φ̂′ = (ρ + 2µ) [µ′`′′′ − µ′′′ (`′ − 1)] + 6 (`′ − 1)
[
`′′ (`′ − 1) (λN)2 − µ′µ′′

]
≤ 0 for any

value ĥ ∈ [0, hmax] .28 Since ĥm−1 < ĥm, it then follows that φ̂
(
ĥm−1

)
< 0 implies

26dξ/dh
∣∣
h=ĥ = −λψ

(
ĥ
)
/α is readily verified when noting from (63) that X2h =

−α−1
(
α2 −X2ξ

)
λ (`′ − 1)N for h = ĥ, substituting this into (58), and simplifying the resulting ex-

pression.
27Recall here that `′

∣∣
h=ĥ < 1.

28Note that by construction the function φ̂
(
ĥ
)

describes the sign of the first derivative φ′
(
ĥ
)

with

respect to h when it is evaluated at a root ĥ. The derivative φ̂′
(
ĥ
)

with respect to ĥ describes how the
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φ̂
(
ĥm

)
< 0, which contradicts φ′

(
ĥm

)
< 0. Thus, m > 1 cannot be true, implying

the existence of a unique root ĥ = ĥg. Maximization of the growth rate then follows

immediately from the construction of φ (h) .

The uniqueness of the root ĥ = ĥg implies φ (h) > 0 for h ∈
[
0, ĥg

)
and φ (h) < 0 for

h ∈
(
ĥg, hmax

]
. While this implies the concavity of g > 0 on the interval

[
h, h

]
, it also

rules out that g > 0 on either [0, h) or
(
h, hmax

]
. In turn, this implies the uniqueness of h

and h.

B.3 Proof of Corollary 3

Given that h = 0 the comparative static terms in (57)-(59), as reported in Appendix B.1,

apply on the whole interval
[
0, h
)
. Then, observing `′ |h=0 > 1 and `′′ < 0, the existence of

ĥξ = ĥr = ĥg ∈
(
0, h
)

is readily established from (57)-(59) for µ′ = µ′′ = 0. By continuity,

the argument extends to µ′ < 0 ≤ µ′′ but sufficiently low in absolute value. For this case,

we note (i) that ĥξ < ĥr follows from dξ/dh
∣∣∣h=ĥr < 0 and dr/dh

∣∣∣h=ĥξ > 0, as is readily

verified from (57) and (58); and (ii) that µ′ < 0 implies ĥr < h |`′=1 < ĥg.

B.4 Proof of Proposition 3

Substituting successively from (38) into (37) and then into (36) we obtain

dU(t0, t)

dh (0)
=

−µ′

(ρ+ µ)2

[
log c(t0, t) +

2 (r − ρ− δ)
ρ+ µ

]
+

µ′

(ρ+ µ)2
+

Θ(t0, t)

(ρ+ µ)χ

[
(t+ 1)

dg

dh (0)
− dr

dh (0)
− µ′

]
+

1

(ρ+ µ)2
dr

dh (0)
, (68)

with

Θ(t0, t) : =
ω (t)

k(t0, t) + ω (t)
∈ [0, 1] (69)

χ : = r + µ− δ − g = (ρ+ µ)
(
1 + µξ−1

)
, (70)

where the second equality in the definition of χ follows from the balanced growth condition

(55). Consider µ′ = 0. We then obtain from (68)

dU(t0, t)

dh (0)
=

Θ(t0, t)

(ρ+ µ)χ

[
(t+ 1)

dg

dh (0)
− dr

dh (0)

]
+

1

(ρ+ µ)2
dr

dh (0)

=
Θ(t0, t)

(ρ+ µ)χ
(t+ 1)

dg

dh (0)
− Θ(t0, t) (ρ+ µ)− χ

(ρ+ µ)2 χ

dr

dh (0)
.

sign prescribing function φ̂
(
ĥ
)

changes with the level of the root ĥ. It should not be misread as being

descriptive in any way of the second-order derivative φ′′
(
ĥ
)

with respect to h and evaluated at ĥ.
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Noting that Θ(t0, t) (ρ+ µ)−χ ≤ (ρ+ µ)−χ = −µ (ρ+ µ) /ξ ≤ 0, where the equality fol-

lows when inserting from (70), it is readily verified that dU(t0, t)/dh (0) > 0 if dg/dh (0) >

0 and dr/dh (0) > 0 and dU(t0, t)/dh (0) < 0 if dg/dh (0) < 0 and dr/dh (0) < 0. Recalling

from Corollary 3 that dg/dh (0) ≥ 0 ⇔ dr/dh (0) ≥ 0, which in turn is true if and only

if h ≤ ĥr = h |`′=1 = ĥg it follows that dU(t0, t)/dh (0) ≥ 0 ⇔ h (0) ≤ ĥg, implying that

dU(t0, t)/dh (0)
∣∣∣h(0)=ĥg = 0 describes a maximum.

B.5 Proof of Lemma 1

Consider t0 ≤ 0 such that k(t0, 0) ≥ 0 in (69) and, therefore, Θ(t0, 0) ≤ 1. Using (38) we

can rearrange (37) to

dc (t0, 0)

dh (0)

∣∣∣h(0)=ĥg = c(t0, 0)

[
µ′

ρ+ µ
+

Θ(t0, 0)

χ

(
− dr

dh (0)

∣∣∣h(0)=ĥg − µ′
)]

.

Note that the RHS increases in Θ(t0, 0) and that dΘ(t0, 0)/dt0 =

[−Θ(t0, 0)/(k(t0, 0) + ω (t))] dk(t0, 0)/dt0 > 0 since dk(t0, 0)/dt0 < 0. It follows that

dc (t0, 0) /dh (0)
∣∣∣h(0)=ĥg ≤ 0⇔ t0 ≤ t̂0, where t̂0 is implicitly defined by

Θ(t̂0, 0) =
χµ′

(ρ+ µ)
(

dr
dh(0)

∣∣∣h(0)=ĥg + µ′
) .

From (57) and (59) we obtain after appropriate manipulations

dr

dh (0)

∣∣∣h(0)=ĥg =
µ′ (ρ+ 2µ)

ξ

α2ξ2

α2ξ2 + µ (ρ+ µ)
< 0. (71)

Using this, it follows immediately that Θ(t̂0, 0) ≥ 0 and it can be shown after some

manipulations that Θ(t̂0, 0) ≤ 1 ⇔ µ ≤ αξ. Furthermore, Θ(t̂0, 0) ∈ (0, 1] implies that

t̂0 ∈ (−∞, 0].29 This completes the proof of part (i).

To prove part (ii) set dg/dh (0)
∣∣∣h(0)=ĥg = 0 in (68) and consider the differential

d

dt0

(
dU(t0, 0)

dh (0)

∣∣∣h(0)=ĥg
)

=

[
−µ′

(ρ+ µ) c(t0, 0)
+

Θ(t0, 0)

χc(t0, 0)

(
dr

dh (0)

∣∣∣h(0)=ĥg + µ′
)]

dk(t0, 0)

dt0
= 0

⇔ Θ(t0, 0) =
χµ′

(ρ+ µ)
(

dr
dh(0)

∣∣∣h(0)=ĥg + µ′
) = Θ(t̂0, 0), (72)

where we observe that dc(t0, 0)/dt0 = (ρ+ µ) dk(t0, 0)/dt0 < 0 and dΘ(t0, 0)/dt0 =

[− (ρ+ µ) Θ(t0, 0)/c(t0, 0)] dk(t0, 0)/dt0 > 0. It can be verified that (72) implies a min-

imum so that t̂0 := argt0<0 min dU(t0, 0)/dh (0)
∣∣∣h(0)=ĥg is true.

29Note here that k (−∞, 0) =∞.
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B.6 Proof of Proposition 4

To prove part (i) we note that k(t0, t0) = 0 in (69) and, therefore Θ(t0, t0) = 1 for t0 ≥ 0.

Employing this together with dg/dh (0)
∣∣∣h(0)=ĥg = 0 in (68) and collecting terms we obtain

dU(t0, t0)

dh (0)

∣∣∣h(0)=ĥg =
−µ′ log c(t0, t0)

(ρ+ µ)2
+
−µ′ [2 (r − ρ− δ)χ+ (ρ+ µ) (ρ+ µ− χ)]

(ρ+ µ)3 χ

− ρ+ µ− χ
(ρ+ µ)2 χ

dr

dh (0)

∣∣∣h(0)=ĥg .
Inserting (71) and ρ+ µ− χ = −µ (ρ+ µ) /ξ yields

dU(t0, t0)

dh (0)

∣∣∣h(0)=ĥg =
−µ′ log c(t0, t0)

(ρ+ µ)2
+

−µ′Φ
(ρ+ µ)3 χ [α2ξ2 + µ (ρ+ µ)]

with

Φ := 2 (r − ρ− δ)χ
[
α2ξ2 + µ (ρ+ µ)

]
−µ (ρ+ µ)2 ξ−1

{[
α2ξ2 + µ (ρ+ µ)

]
+ α2ξ (ρ+ 2µ)

}
=

[
2 (r − ρ− δ)χ− µ (ρ+ µ)2 ξ−1

] [
α2ξ2 + µ (ρ+ µ)

]
−α2µ (ρ+ µ)2 (ρ+ 2µ)

= (ρ+ µ)
{[

2 (r − ρ− δ)
(
1 + µξ−1

)
− µ (ρ+ µ) ξ−1

] [
α2ξ2 + µ (ρ+ µ)

]
−α2µ (ρ+ µ) (ρ+ 2µ)

}
= (ρ+ µ)

{[
2g
(
1 + µξ−1

)
+ µ (ρ+ µ) ξ−1

(
1 + 2µξ−1

)] [
α2ξ2 + µ (ρ+ µ)

]
−α2µ (ρ+ µ) (ρ+ 2µ)

}
= (ρ+ µ)

{
2g
(
1 + µξ−1

) [
α2ξ2 + µ (ρ+ µ)

]
+ µ2 (ρ+ µ)2 ξ−2 (ξ + 2µ)

+ α2µ (ρ+ µ) (ξ − ρ)
}
> 0

where the third equality follows after substituting from (70) and collecting terms; where

the fourth equality follows after substituting from (55) and collecting terms; where the fifth

equality follows after appropriate rearrangements; and where the inequality follows when

observing that ξ − ρ = r
(
1− α2

)
α−2 + µ (ρ+ µ) ξ−1 > 0 as from (54) and (55), implying

that all terms in the bracelets are non-negative. But then, dU(t0, t0)/dh (0)
∣∣∣h(0)=ĥg > 0

if log c(t0, t0) ≥ 0, which completes the proof of part (i).

To prove part (ii) we recall from Lemma 1 that dU(t0, 0)/dh (0)
∣∣∣h(0)=ĥg ≥

dU(t̂0, 0)/dh (0)
∣∣∣h(0)=ĥg for all t0 ≤ 0. It is therefore necessary and sufficient to establish

dU(t̂0, 0)/dh (0)
∣∣∣h(0)=ĥg ≥ 0. Inserting from (72) into (68) we obtain

dU(t̂0, 0)

dh (0)

∣∣∣h(0)=ĥg =
−µ′ log c(t̂0, 0)

(ρ+ µ)2
− 2µ′ (r − ρ− δ)

(ρ+ µ)3
+

1

(ρ+ µ)2
dr

dh (0)

∣∣∣h(0)=ĥg .
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For log c(t̂0, 0) > log c(0, 0) ≥ 0 it follows that dU(t̂0, 0)/dh (0)
∣∣∣h(0)=ĥg ≥ 0 if

dr

dh (0)

∣∣∣h(0)=ĥg − 2µ′ (r − ρ− δ)
ρ+ µ

=
−µ′

{
2 (r − ρ− δ)

[
α2ξ2 + µ (ρ+ µ)

]
− α2ξ (ρ+ 2µ) (ρ+ µ)

}
(ρ+ µ) [α2ξ2 + µ (ρ+ µ)]

=
−µ′

{
2
[
g + µ (ρ+ µ) ξ−1

] [
α2ξ2 + µ (ρ+ µ)

]
− α2ξ (ρ+ 2µ) (ρ+ µ)

}
(ρ+ µ) [α2ξ2 + µ (ρ+ µ)]

≥ 0

⇔ g ≥
(ρ+ µ)

[
α2ξ2ρ− 2µ2 (ρ+ µ)

]
2ξ [α2ξ2 + µ (ρ+ µ)]

(73)

implying that the growth rate must be sufficiently large. Note that the condition is

non-trivial by considering e.g. the limiting case µ → 0. The requirement is then given

by g ≥ ρ2/ (2ξ) and violated for g = 0, the latter implying from (60) and (61) that

ξ =
[
ρ+

(
1− α2

)
δ
]
/α2 < ∞. Hence, g must be sufficiently large, which completes the

proof of part (ii).
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