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Abstract

We propose a Bayesian nonparametric instrumental variable approach that allows

us to correct for endogeneity bias in regression models where the covariate effects

enter with unknown functional form. Bias correction relies on a simultaneous equa-

tions specification with flexible modeling of the joint error distribution implemented

via a Dirichlet process mixture prior. Both the structural and instrumental variable

equation are specified in terms of additive predictors comprising penalized splines

for nonlinear effects of continuous covariates. Inference is fully Bayesian, employing

efficient Markov Chain Monte Carlo simulation techniques. The resulting posterior

samples do not only provide us with point estimates, but allow us to construct

simultaneous credible bands for the nonparametric effects, including data-driven

smoothing parameter selection. In addition, improved robustness properties are

achieved due to the flexible error distribution specification. Both these features are

extremely challenging in the classical framework, making the Bayesian one advanta-

geous. In simulations, we investigate small sample properties and an investigation

of the effect of class size on student performance in Israel provides an illustration

of the proposed approach which is implemented in an R package bayesIV.
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taneous credible bands.
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1 Introduction

One frequently encountered problem in regression analysis in particular in case of observa-

tional data are endogenous regressors, i.e. explanatory variables that are correlated with

the unobservable error term. Sources of this correlation include omitted variables that are

associated with both regressors and response (confounder), measurement error, reverse

causality and sample selection. Neglecting the resulting asymptotically not vanishing en-

dogeneity bias by using standard regression techniques can lead to severely misleading

inference. Two-stage least squares (2SLS) and generalized methods of moments (GMM)

estimators in combination with instrumental variables, i.e. additional covariates that

are uncorrelated to the error term but reasonably strongly associated to the endogenous

covariate, are therefore routinely applied in the parametric regression context (see e.g.

Wooldridge, 2002). These approaches do not necessarily make distributional assumptions

for the error term (for point estimation) but intrinsically rely on linearity of all effects,

which is frequently not justified by subject-matter considerations. Thus, in recent years

an increasing number of approaches to nonparametric instrumental variable regression

has appeared, see Blundell and Powell (2003) for an excellent survey and also Horowitz

(2011) including a discussion on implications on inference in misspecified parametric mod-

els making a strong case for nonparametric estimation. However, still these methods are

rarely used in practice partly due to a lack of easily available implementations and the

need of user assistance for choosing specific tuning parameters. This paper addresses

these issues by providing a Bayesian framework which routinely allows the automatic

choice of tuning parameters and the construction of simultaneous credible bands for the

quantification of the uncertainty of function estimates. Simultaneous credible bands are

the Bayesian analogue to simultaneous confidence bands which are important in order to

assess the uncertainty of an entire curve estimate and study the relevance of an effect, for

example. Pointwise confidence bands, which are almost exclusively used for this purpose,

will understate this uncertainty and can thus lead to erroneous identifications of nonlinear

effects.

In general, the available nonparametric frequentist approaches can be split into two

groups: control function approaches and instrumental variable approaches. The control

function approach (Newey et al., 1999, Pinkse, 2000 and Su and Ullah, 2008) is directly

related to the simultaneous equations literature. For simplicity, for the remainder of the
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introduction we consider the model with a single endogenous covariate

y2 = f2(y1) + ε2, y1 = f1(z1) + ε1 (1)

with response y2, covariate y1 and instrumental variable z1 with effects of unknown func-

tional form f2 and f1, respectively, and random errors ε2 and ε1. Endogeneity bias

arises if E(ε2|ε1) 6= 0. Then, assuming identification restrictions E(ε1|z1) = 0 and

E(ε2|ε1, z1) = E(ε2|ε1), it follows

E(y2|y1, z1) = f2(y1) + E(ε2|ε1, z1) = f2(y1) + E(ε2|ε1) = f2(y1) + v(ε1) (2)

where v(ε1) is a function of the unobserved error term in the first equation. This has

motivated the following two-stage estimation scheme: In a first step, estimated resid-

uals ε̂1 are determined from y1 − f̂1(z1) using any nonparametric estimation technique

for estimating the nonlinear function f̂1(z1). In a second step, an additive model (e.g.

Hastie and Tibshirani, 1990) with response variable y2 is estimated, where in addition

to y1 the estimated residuals ε̂1 are included as a further covariate. Disadvantages of

this two-stage approach include the difficulty to incorporate the uncertainty introduced

by estimating the parameters in the first step when constructing confidence bands in the

second step. In particular, no approach for simultaneous confidence bands that accounts

for this uncertainty has been proposed to date. In addition, automatic smoothing pa-

rameter selection for the control function v(ε1) is difficult since common selection criteria

like cross-validation or plug-in estimators focus on minimizing the error in predicting the

response variable y1 while we are interested in achieving a precise estimate for v(ε1) to

yield full control for endogeneity. Finally, outliers and extreme observations in ε1 may

severely affect the endogeneity correction and therefore some sort of robustness correction

(such as trimming of the residuals) might be necessary (Newey et al., 1999).

A completely different strategy is to assume E(ε2|z1) = E(y2 − f2(y1)|z1) = 0 leading to

the instrumental variables approach, see for example Newey and Powell (2003). Here, an

ill-posed inverse problem has to be solved creating the need for an additional regular-

ization parameter. Data-driven simultaneous selection of the smoothing parameter and

the regularization parameter is still an open question (Darolles et al., 2011). Again, also
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construction of simultaneous confidence bands is difficult, with Horowitz and Lee (2009)

being the first attempt. In the remainder of this paper this approach will not be discussed

further.

In the Bayesian framework, most available nonparametric approaches are based on repre-

senting the model as simultaneous equations and are thus related to the control function

approach (see also Kleibergen and Zivot (2003) for an overview over Bayesian parametric

methods). All of these assume bivariate normality of the errors (ε1, ε2) ∼ N(0,Σ) (e.g.

Chib and Greenberg, 2007, Chib et al., 2009 and Koop et al., 2005). Then, both equa-

tions in (1) are estimated simultaneously in a Gibbs-sampling scheme, facilitating the

estimation of smoothing parameters and credible bands. Thus, the control function is not

explicitly estimated but is given implicitly by the conditional error distribution. However,

bivariate normality implies linearity of this conditional expectation since E(ε2|ε1) = σ12

σ2
1
ε1,

where σ12 = Cov(ε1i, ε2i) and σ2
1 = Var(ε1i). As a consequence, the control function is

implicitly restricted to be linear in ε1, corresponding to the assumption that a hypothet-

ical (unknown) omitted variable inducing the endogeneity bias has a linear effect on the

response. This assumption seems to be rather restrictive, in particular when allowing

for effects of unknown functional form for the observed explanatory variables. Note that

although 2SLS procedures interpreted in their control function representation in the fully

parametric context (where all functions are restricted to be linear and estimation is based

on ordinary least squares) do not make assumptions on the marginal distributions of ε1

and ε2. However, they still rely on linearity of the conditional expectation E(ε2|ε1). An-

other common source for non-normality of the error terms are outliers and thus robustness

issues of methods relying on bivariate normality are a serious concern. As a consequence,

Conley et al. (2008) propose the application of a Dirichlet process mixture (DPM) prior

(Escobar and West, 1995) to obtain a flexible error distribution, but they still rely on

linear covariate effects. In this work, we extend their approach by proposing a Bayesian

approach based on Markov chain Monte Carlo (MCMC) simulation techniques employing

Bayesian P-splines (Lang and Brezger, 2004) for the estimation of flexible covariate effects

and a DPM prior for the estimation of a flexible joint error distribution. Univariate re-

gression models with smooth covariate effects and a DPM prior for the error density have

been previously considered among others by Chib and Greenberg (2010). Thus, neither

we make an assumption on the functional form of the effects (besides a smoothness con-

dition) nor on the distribution of the error terms. Further, we will allow a more flexible

4



choice of prior distributions than Conley et al. (2008). The Bayesian formulation will

enable us to automatically estimate the smoothing parameters in both equations and to

construct simultaneous credible bands that do not depend on distributional assumptions.

Moreover, through the use of the DPM prior, outliers in the error terms will automatically

be downweighted such that improved outlier robustness is provided.

The approach is used to analyze the effect of class size on scholastic achievements of stu-

dents in Israel following Angrist and Lavy (1999). Thereby, a clearly non-normal bivariate

error density warrants nonparametric estimation of the error density in order to ensure

proper endogeneity bias correction and valid confidence bands. As already suggested by

Horowitz (2011), nonparametric estimation of the relationship in combination with simul-

taneous credible bands is important for proper evaluation of the estimation uncertainty

and is able to reveal new insights into the relationship.

The remainder of the paper is organized as follows. In Section 2 the considered model is

introduced and prior distributions are discussed. Section 3 describes Bayesian inference

including smoothing parameter determination and construction of simultaneous credible

bands. In Section 4, small sample properties are explored through simulations and the

approach is compared to existing approaches. In Section 5, an application to class size

effects on student performance is provided and the paper concludes in Section 6.

2 Additive Simultaneous Equations Model

We consider an additive simultaneous equations model

y2i = γ20 + f21(y1i) +

q2∑
`=1

x2`iγ2` +

p2∑
`=1

f2,`+1(z2`i) + ε2i (3)

y1i = γ10 +

q1∑
`=1

x1`iγ2` +

q2∑
`=1

x2`iγ1,q1+` +

p1∑
`=1

f1`(z1`i) +

p2∑
`=1

f1,p1+`(z2`i) + ε1i, i = 1, . . . , n(4)

where y2 denotes the outcome of primary interest affected by one continuous endogenous

variable y1, q2 exogenous variables x2`, ` = 1, . . . , q2 with linear effects (typically cat-

egorical covariates in dummy or effect coding), and p2 exogenous continuous covariates

z2`, ` = 1, . . . , p2. Both the effect of the endogenous variable y1 and the effects of the
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continuous covariates z2` are allowed to be of unknown, nonlinear form represented by

smooth functions f21(y1) for the endogenous variables and f`(z2,`+1), ` = 1, . . . , p2 for

the exogenous covariates. The same model structure applies to the endogenous variable

which is related to parametric effects of covariates x1`, ` = 1, . . . , q1 and x2`, ` = 1, . . . , q2

as well as potentially nonlinear effects of continuous covariates z1`, ` = 1, . . . , p1 and z2`,

` = 1, . . . , p2. To ensure identifiability of the additive model structure, all functions fr`(·)
are centered around zero.

Endogeneity bias in function f21(y1) arises when the residuals ε1 and ε2 are not indepen-

dent and the outcome equation is estimated without taking the model for the endogenous

variable into account. In the simultaneous equations model, identification relies on the

instrumental variables x11, . . . , x1q1 and z11, . . . , z1p1 (with the same identification restric-

tions as in the control function approach). While a bivariate normal distribution for the

error terms (ε1i, ε2i) is a convenient model that enables the inclusion of correlated errors

(see for example Chib and Greenberg (2007), Chib et al. (2009) or Koop et al. (2005))

it implies strong implicit assumptions on the control function as discussed in the intro-

duction. We therefore follow Conley et al. (2008) and employ a Dirichlet process mixture

prior (Escobar and West, 1995) for the joint error distribution which basically allows to

specify a hyperprior on the space of potential error distributions. Prior choices for all

involved parameters are discussed in the following.

2.1 Parametric Effects

For parametric effects γr`, r = 1, 2, ` = 0, . . . , qr, we use diffuse priors p(γr`) ∝ const in

case of complete lack of prior knowledge. Note that there is abundant literature showing

that flat priors in combination with very weak (or even superfluous) instrumental variables

(i.e. instruments are not or only very weakly related to y1) can lead to identification prob-

lems (see e.g. Chao and Phillips, 1998, Hoogerheide et al., 2007, Kleibergen and Van Dijk,

1998 and Kleibergen and Zivot, 2003) and the use of Jeffrey’s prior is then recommended.

However, when using Dirichlet process mixtures for the joint error distribution, Jeffrey’s

prior does no longer take the well known form proportional to the determinant of the

cross-product of the design matrix that arises in case of normal error terms. Therefore,

we will restrict our analyses to flat priors and recommend to check the explanatory power

of instrumental variables in advance or to use informative normal priors (such that poste-
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riors will always be proper). Nevertheless, our simulations in Section 4 indicate that our

approach works well even in the case of quite weak instruments confirming simulations

results of Conley et al. (2008).

Note that inclusion of random effects for clustered or panel data is straight-forward using

normal priors (with zero mean and conjugate prior on the variance parameter).

2.2 Nonparametric Effects

Since their introduction by Eilers and Marx (1996), penalized splines have become increas-

ingly popular for representing effects of continuous covariates with unknown, nonlinear

form but with a global smoothness assumption on differentiability. While the original

motivation was mainly based on computational convenience, the properties of penalized

splines have now been thoroughly investigated and are well understood, see for example

Kauermann et al. (2009); Reiss and Ogden (2009); Claeskens et al. (2009).

We will consider the Bayesian analogue to penalized splines as introduced by (Lang and

Brezger, 2004). Thus, we assume that each of the smooth functions fr`(x) of some covari-

ate x ∈ {y1, z11, . . . , z1p1 , z21, . . . , z2p2} can be represented by a suitable spline function,

i.e. fr`(x) ∈ S(dr`, κr`), where S(dr`, κr`) denotes the space of spline functions of degree

dr` with knots κr` = {xmin < κ1 < κ2 < . . . < κKr` < xmax}. Since S(dr`, κr`) is a

(Kr`+dr`+1)-dimensional vector space (a subspace of all dr`-times continuously differen-

tiable functions), fr`(x) can then be represented as a linear combination of suitable basis

functions Bk(x), i.e.

f(x) =

Kr`+dr`+1∑
k=1

βr`kBk(x) = Xr`βr`.

Due to their simplicity and numerical stability, we will utilize B-spline basis functions in

the following.

Although the global smoothness properties are determined by the degree of the spline

basis dr`, the variability of the resulting estimates heavily depends on the location and

number of knots. Instead of directly aiming at optimizing the number and position of the

knots in a data-driven manner, the penalized spline approach relies on using a generous

number of equidistant knots (with the common rule of thumb Kr` = min(n/4, 40)) in

combination with a penalty that avoids overfitting. In the frequentist framework, Eilers
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and Marx (1996) proposed to penalize the squared q-th order differences of adjacent basis

coefficients, thereby approximating the integrated squared q-th derivative of the spline

function. In the Bayesian framework, this corresponds to assigning a random walk prior

to the spline coefficients with

βr`k = βr`,k−1 + uk or βr`k = 2βr`,k−1 − βr`,k−2 + uk

for first- and second-order random walks with uk
i.i.d.∼ N(0, τ 2

r`) and non-informative priors

for the initial parameters. In this specification, the random walk variance τ 2
r` acts as an

inverse smoothing parameter with small values corresponding to heavy smoothing while

large values allow for considerable variation in the estimated function. In the limiting case

of τ 2
r` → 0, the estimated function approaches a constant or a linear effect for first and

second order random walk priors, respectively. From the random walk specification, the

joint prior distribution for the coefficient vector βr` can be derived as a partially improper

multivariate Gaussian distribution with density

p(βr`|τ 2
r`) ∝

(
1

2τ 2
r`

) rank(∆r`)

2

exp

(
− 1

2τ 2
r`

βtr`∆r`βr`

)

where ∆r` is the penalty matrix given by the cross-product of a difference matrix Dr` of

appropriate order, i.e. ∆r` = Dt
r`Dr`.

To complete the fully Bayesian prior specification, a prior on τ 2
r` has to be assigned. We

choose a conjugate inverse-gamma distribution with shape and scale parameters aτr` and

bτr` , i.e. τ 2
r` ∼ IG(aτr` , bτr`).

2.3 Joint Error Distribution

The standard approach in the Bayesian nonparametric simultaneous equations literature

for modeling the joint error distribution of (ε1i, ε2i) is to assume bivariate normal errors

(ε1i, ε2i) ∼ N(0,Σ), i = 1, . . . , n with constant covariance matrix Σ which is assumed to

be a priori inverse-Wishart distributed Σ ∼ IW(sΣ, SΣ) where IW denotes the inverted-

Wishart distribution parameterized such that E(Σ) = S−1
Σ /(sΣ − 3). As mentioned in

the introduction, assuming bivariate normality induces strong implicit assumptions on
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the control function and a violation of these assumptions can have severe impact on the

general results and in particular the endogeneity correction. An obvious first relaxation is

to use a finite mixture of K∗∗ Gaussian components with mixing proportions π1, . . . , πK∗∗

and component-specific (nonconstant) means and covariances µc, Σc, c = 1, . . . , K∗∗:

(ε1i, ε2i)|π1, µ1,Σ1, . . . , πK∗∗ , µK∗∗ ,ΣK∗∗ i.i.d.
K∗∗∑
c=1

πc N(µc,Σc),
K∗∗∑
c=1

πc = 1.

Though being already quite flexible, this model introduces the problem of selecting the

number of mixture components K∗∗. In addition, the number of components is assumed

to be fixed as n→∞ which is an undesired property in the given setting. As a remedy,

we consider a Gaussian Dirichlet Process Mixture (Escobar and West, 1995) which can

be interpreted as the limiting case of a finite mixture model as K∗∗ → ∞ (Neal, 2000).

More specifically, we assume an infinite mixture model with the following hierarchy:

(ε1i, ε2i) i.i.d.
∞∑
c=1

πc N(µc,Σc)

(µc,Σc) i.i.d. G0 = N(µ|µ0, τ
−1
Σ Σ) IW(Σ|sΣ, SΣ)

πc = vc

(
1−

c−1∑
j=1

(1− πj)

)
= vc

c−1∏
j=1

(1− vj), c = 1, 2, . . .

vc i.i.d. Be(1, α).

In this specification, the mixture components are assumed to be i.i.d. draws from the

base measure G0 (given by a normal-inverse Wishart distribution) of the Dirichlet process

(DP) while the mixture weights are generated in a stick-breaking manner based on a Beta

distribution depending on the concentration parameter α > 0 of the Dirichlet process.

The concentration parameter α determines the strength of belief in the base distribution

G0, which is the expectation of the Dirichlet process around which more mass will be

concentrated for large α since the variance of the Dirichlet process decreases with α.

In order to emphasize the capability of the prior to model means and covariances vary-

ing with observations, we can also express the implied hierarchy by (ε1i, ε2i)|(µi,Σi) ∼
N(µi,Σi), i = 1, . . . , n, with (µi,Σi)|G

i.i.d.∼ G and G ∼ DP(α,G0) with constructive rep-

resentation G =
∑∞

c=1 πcδ(µc,Σc) (Sethuraman, 1994), where δθ is a unit point mass at θ.
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Although we are dealing with an infinite mixture, there can be at most n components

affiliated with data and therefore most components will in fact be empty and only deter-

mined by the prior. More precisely, in a specific data set errors will be clustered together

into K∗ ≤ n clusters with means µl = (µ1l, µ2l)
t and covariances Σl =

 σ2
1l σ12,l

σ12,l σ2
2l

,

l = 1, . . . , K∗. This can be nicely seen by considering the so-called polya-urn scheme

(Blackwell and MacQueen, 1973). Let θ1 = (µ1,Σ1), θ2 = (µ2,Σ2), . . . be an (infinite) se-

quence of i. i. d. draws from G. Then, the predictive distribution of a new θk+1 conditional

on the previous values θ1, . . . , θk marginalizing out G is given by

θk+1|θ1, . . . , θk ∼
α

α + k
G0 +

1

α + k

k∑
i=1

δθi (5)

with δθi denoting a unit point mass at θi. That is, θk+1 equals to any of the k previous

θ1, . . . , θk with probability 1
α+k

and is drawn from the base distribution G0 with probability

α
α+k

. Moreover, Equation (5) can also be reexpressed in terms of the distribution of the

distinct values known as a so-called Chinese restaurant process. By doing so, it can be

shown that a new θk+1 equals to some θl with probability nl
α+k

with nl the number of

values already corresponding to θl, i.e. the probability is proportional to the cluster size.

Besides the clustering property of the Dirichlet process, these probability expressions

also demonstrate the important role of the concentration parameter α: The expected

number of components for a given sample size n is approximatively given by E(K∗|α, n) ≈
α log(1 + n/α) (Antoniak, 1974). Thus, the concentration parameter α is directly related

to the number K∗ of unique pairs (µl, Σl) in the data. In order to avoid fixing K∗ we

therefore estimate α from the data and consequently have to assign a prior on it. The

standard conjugate prior for α is a Gamma prior α ∼ Ga(aα, bα). Alternatively, a discrete

prior on K∗ as in Conley et al. (2008) can be used (which is equally supported by our

software). See Conley et al. (2008) for details.

Since our model includes constants γ10 and γ20, we have to ensure that E(ε1i, ε2i) = 0 for

identifiability. Though centered Dirichlet Process Mixtures could generally be applied for

this purpose, we opt to achieve this by choosing µ0 = (0, 0)t and constraining
∑n

i=1 µ1i =∑n
i=1 µ2i = 0. This simple solution allows us to use efficient algorithms for estimation.

Note that from an a priori zero mean µ0 = (0, 0)t alone, it does not follow that G has a
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posterior zero mean. Note also that for incorporation of categorical variables (dummies) in

the regression equation, this constraint is equally required. Conley et al. (2008) avoid the

identifiability constraint by omitting the global intercepts, but oversee the unidentifiability

of the dummy coefficients in this case. In fact, this fully explains the deviation of their

estimated returns to education (Card, 1995) from the 2SLS estimate and replicating their

analysis of the relationship between education and wages imposing E(µ1) = E(µ2) = 0

results in an estimate barely differing from the 2SLS estimate.

With respect to priors on the parameters in the base distribution G0, Conley et al. (2008)

propose to choose parameters µ0, τΣ, sΣ and SΣ as fixed in order to reduce the compu-

tational burden. They argue that by standardizing y1 and y2, zero means µ0 = (0, 0),

a diagonal SΣ as well as parameters sΣ and τΣ chosen such that components of Σc and

µc may take even extreme values given the data was standardized beforehand, introduce

negligible prior information. However, as Escobar and West (1995) emphasize, the prior

variance τ−1
Σ (which is closely linked to the bandwidth in kernel density estimation in

case of a constant Σ) has a strong impact on the degree of smoothness of the density.

For a given number of distinct mixture components in the data (K∗), a small value of τΣ

allows the means (µ1l, µ2l), l = 1, . . . , K∗ to vary more strongly resulting in a greater

chance of multimodality in the error term distribution for fixed Σl. Also, τΣ may have

an effect on the down-weighting of outliers in the conditional mean E(ε2i|ε1i) and thus

on the influence of outliers on endogeneity bias correction as we will see in Section 3.2.

In order to express uncertainty about τΣ, Escobar and West (1995) therefore propose to

choose a conjugate prior τΣ ∼ Ga(aΣ/2, bΣ/2). Finally, the choice of an inverse Wishart

prior on SΣ, SΣ ∼ IW(sSΣ
, SSΣ

), might be desirable. Our method allows to flexibly choose

between fixed and uncertain hyperparameters.

2.4 Hyperparameter Choices

From the properties of the inverse Wishart distribution (see e.g. Link and Barker (2005)

for a related discussion) it follows that the residual variances (diagonal elements of Σl)

are a priori inverse gamma distributed, σ2
rl ∼ IG((sΣ − 1)/2, SΣrr/2), r = 1, 2 with

SΣrr the r-th diagonal element of SΣ. Further, given SΣ is diagonal, it follows that the

correlation coefficient ρl in component l is a priori beta-distributed, (ρl−1)/2 ∼ Be((sΣ−
1)/2, (sΣ − 1)/2). Thus, the prior of the correlation coefficient has a symmetric density
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around 0 (since the beta distribution parameters are equal) and consequently choosing a

diagonal SΣ results in a zero prior mean for the correlation E(ρl|·) = 0. However, the prior

distribution of ρl also depends on sΣ. For sΣ = 3, we obtain a Be(1, 1) distribution which

is the uniform distribution, for sΣ < 3 we obtain a U-shaped distribution and for sΣ > 3

a unimodal distribution. Conley et al. (2008) use as default specification sΣ = 2.004 and

thus a prior on ρl with a U-shaped density. Thus, although in their prior choice errors are

uncorrelated in the mean, more probability mass is assigned to correlations close to −1

and 1 than to values close to zero. To avoid such a prior information, we rather choose

sΣ = 3 such that the prior on ρl is uniform over [−1, 1]. Alternatively, in certain situations

one might want to choose sΣ > 3 such that the prior on ρl is unimodal and symmetric

around zero in order to a priori favor no endogeneity in case of only weak information in

the data (and thereby stabilize estimation similar to regularization techniques).

Given sΣ = 3 we obtain σ2
rl ∼ IG(1, SΣrr/2) as prior on the residual variances. Taking

into account that responses are centered and standardized, we choose diagonal SΣ, with

equal elements such that the inverse Gamma introduces only weak information on the

residual variances. In order to choose these elements, we follow Conley et al. (2008) and

choose default SΣrr such that P (0.25 < σrl < 3.25) = 0.8 based on the inverse gamma

distribution of σ2
rl keeping in mind that y1 and y2 were standardized beforehand. With

sΣ = 3 we obtain SΣ = 0.2I2 and thus σ2
rl ∼ IG(1, 0.1) as a weakly informative default.

Note that with sΣ = 2.004 and SΣ = 0.17I2, Conley et al. (2008) choose as default a

IG(0.502, 0.085)-prior on the residual variances. Although imposing an IW-prior on SΣ

instead is conceptually and computationally straight-forward, associated hyperparameter

choice is unclear and is therefore not followed in the remainder of the paper.

Given the possible impact of τΣ on the smoothness of the density and weighting of outliers,

we might want to impose a hyperprior on τΣ, τΣ ∼ Ga(aΣ/2, bΣ/2). We will follow Escobar

and West (1995) and impose a diffuse gamma prior with default hyperparameters aΣ = 1

and bΣ = 100 which is in contrast to Conley et al. (2008) who choose a fixed τΣ. The

impact of estimating τΣ versus fixing it is studied in our simulation study in Section 4.1.

With respect to the concentration parameter α, we follow the recommendation of Ishwaran

and James (2002) and choose a Gamma prior with hyperparameters aα = bα = 2 as

defaults. This allows both small and large values of α corresponding to many and few

mixture components, respectively. For the smoothing parameters τ 2
r` of nonparametric

effects we choose the standard noninformative prior τ 2
r` ∼ IG(0.001, 0.001) in the following.
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3 Bayesian Inference

3.1 Estimation

Both equations (3) and (4) can be written in the generic form yr = ηr + εr, r = 1, 2, with

predictors

ηr = Vrγr +

p̃r∑
`=1

Xr`βr`

where all parametric effects (including the intercept) in each equation are combined in

the design matrix Vr with regression coefficients γr whereas the nonparametric effects are

represented using B-spline design matrices Xr` with corresponding basis coefficients βr`

and p̃1 = p1 + p2, p̃2 = p2 + 1.

Estimation is carried out by using Gibbs sampling steps in an efficient Markov Chain

Monte Carlo implementation. Specifically, given the parameters of the error distribution,

full conditionals for the covariate effect parameters in each equation resemble those for

the normal heteroscedastic regression model and sampling techniques proposed in Lang

and Brezger (2004) (with heteroscedastic errors) can be applied. On the other hand,

given the parameter vectors βr`, τ
2
r`, ` = 1, . . . , p̃r and γr, r = 1, 2, the components of

the error distribution can be obtained using any algorithm for Bayesian nonparametric

estimation of bivariate densities based on DPM priors (see Neal (2000) for an overview).

Thus, our software allows to choose efficiently implemented algorithms that are called on

top of our sampler. More precisely, we use the implementation provided by the R package

DPpackage (Jara et al., 2011) of two Gibbs sampling algorithms with auxiliary variables

given in Neal (2000). In addition, the implementation accompanying Conley et al. (2008)

is integrated. Full details on all full conditionals are given in Appendix A.1.

3.2 Smoothing Parameter Estimation

In general, all nonparametric smoothing techniques involve some smoothing parameter

controlling the roughness of the fit. This smoothing parameter has a strong impact on

the estimate and has to be carefully chosen in finite samples. However, data-driven choice

is rather overlooked in many theoretical works on nonparametric instrumental variable

estimators focusing on asymptotic properties. In the control function approach, smoothing
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parameter choice for the control function E(ε2|ε1) and of the covariate functions have to

be addressed differently. Here, smoothing parameter choice is particularly delicate since

smoothness of functions in the first stage and of the control function influence the way

of endogeneity bias correction for f21(y1). Thereby, the major problem is to find the

smoothing parameter for the control function. Given this smoothing parameter is correctly

chosen, it seems plausible that the remaining ones can be found using common criteria like

cross-validation. Newey et al. (1999) minimize the cross-validation (CV) criterion over a

multidimensional grid and thus treat the control function in the same way as f21(y1). That

is, the MSE of the additive predictor as a whole is (asymptotically) minimized instead of

the MSE of f21(y1) given E(ε2|ε1). Marra and Radice (2011) take the same route using

penalized splines with quadratic roughness penalties and minimize a multivariate version

of generalized cross-validation (GCV). In Section 4.2, we show that this can lead to a

confounded estimate of f21(y1) due to inappropriate choices for the smoothing parameter

of the control function. Choosing the smoothing parameter from a global optimization

criterion often induces insufficient smoothness, although situations with oversmoothing

may also occur. In general, global optimization criteria are not suitable for determining

smoothing parameters that minimize the MSE of f21(y1). Su and Ullah (2008) propose a

”plug-in” estimator for the smoothing parameter in a multidimensional function f(y1, ε1)

(in the model with q1 = q2 = p2 = 0, p1 = 1) where f(·, ·) is a two-dimensional function

using kernel regression with a product kernel with single bandwidth, and a pilot bandwidth

for estimating f̂1(z1). Here, choosing the pilot bandwidth and the assumption of a single

bandwidth for f(y1, ε1) might be problematic.

Our Bayesian approach is closely related to the control function approach. For comparison

with Equation (2), consider the conditional distribution of y2 given y1, then

y2i = γ20 + f21(y1i) +

q2∑
`=1

x2`iγ2` +

p2∑
`=1

f2,`+1(z2`i) + E(ε2i|ε1i) + ξi, ξi ∼ N(0, σ2
(2|1),i)

with conditional variance σ2
(2|1),i = σ2

2,i−
σ2

12,i

σ2
1,i

and ”control function” v(ε1i) = E(ε2i|ε1i) =

µ2i +
σ12,i

σ2
1,i

(ε1i − µ1i). Estimates for parameters in E(ε2i|ε1i) result from the DP mixture

and covariate effects f2`(·) are estimated by penalized splines. Compared to parametric

frequentist approaches and Bayesian approaches assuming bivariate normality,
σ12,i

σ2
1,i

may

vary with observation i rather than being constant. This formulation of the conditional
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mean of the error terms also shows that in the presence of heteroscedasticity, endogeneity

bias correction may fail when bivariate normality with constant variance is assumed.

Compared to nonparametric frequentist approaches,
σ12,i

σ2
1,i

acts like a varying coefficient

allowing the degree of endogeneity correction to be different over observations. The non-

constant variances σ2
1,i and means µ1i shrink the error terms of the first stage equation

towards their (nonconstant) mean and thereby automatically down weight outliers in ε1i.

Here, on the one hand the ”smoothing parameter” is the number of mixture components

governed by the data and prior on the concentration parameter α. On the other hand, τΣ

plays an important role for the smoothness of the error density. As mentioned before, a

small τΣ allows the µ1i to vary more strongly around its mean which translates in a possi-

bly stronger downweighting of outliers in ε1i depending on τΣ. Note that control function

approaches can be extremely sensitive to outliers in the error distribution if these are

not explicitly handled, since they do not account for the high variability of the control

function at extreme values of ε1 (outliers) where observations are scarce. Performance of

the DPM approach in case of residual outliers and capability of explaining unobserved

heterogeneity are investigated in Section 4.2. However, note that there is no such thing

as a free lunch and the downweighting of outliers can also turn into a disadvantage in

specific situations. If y1 or y2 are discrete and concentrated very strongly on only a few

numbers, rarer measurements may be misinterpreted as outliers and variability can then

completely be explained by the error distribution leaving no variation to be explained by

the covariates (in particular in case of binary covariates). We observed this problem in a

re-analysis of the relationship between years of education (as discrete endogenous covari-

ate) and wages in the US (Card, 1995) with nonparametric effect of the control variable

age (or transformations thereof). Here, half of the observed number of years of schooling

were 12 and 16 (corresponding to usual years of schooling in the US education system)

resulting in an extremely imbalanced weighting of the observations. In the present exam-

ple, the omitted variable ”education system” can be understood as inducing unobserved

heterogeneity (clustering at 12 and 16 years of schooling is unexplained by the included

covariates) which is then absorbed by the predicted error terms leaving little variation to

be explained by the remaining explanatory variables. Note that this issue is not specific

to our proposed approach but applies to all regression approaches with DPM prior on

the error density as in Chib and Greenberg (2010) and in Leslie et al. (2007). A rough

diagnostic check is to visualise the estimated error density for discreteness.
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Note that in contrast to the frequentist approaches, we do not impose dependencies be-

tween values of v(ε1i) for adjacent ε1i and
σ12,i

σ2
1,i

is also not a function of ε1. Also note

that the DP prior specification allows ”for different degrees of smoothing across the sam-

ple space through the use of possibly differing variances” (Escobar and West, 1995) and

thus the ”smoothing parameter” of the conditional mean can be considered to be locally

adaptive. See Escobar and West (1995) for connections between DPM and kernel density

estimation with varying bandwidth.

3.3 Simultaneous Bayesian Credible Bands

Simultaneous inference is important in order to assess the estimation uncertainty for the

entire curve allowing us to make statements about the significance of an effect or feature

significance and to perform specification tests. While a frequentist (1− α)100% simulta-

neous confidence band is defined such that in case of multiple replications of the data with

the same mean function, (1−α)100% of the estimated functions will be entirely inside the

band, a simultaneous credible band as the Bayesian counterpart is defined as the region

Iα such that Pf |Y (f ∈ Iα) = 1 − α, i.e. the posterior probability that the entire true

function f is inside the region given the data equals to 1 − α. Note that the commonly

used (frequentist) pointwise bands usually only provide that on average (1 − α)100% of

the data points of the true function are inside the band (in an experiment where the data

is sampled with the same f many times). In the instrumental variable regression context

Bayesian credible bands have the considerable advantage of naturally incorporating un-

certainty from the estimation of all the unknowns in the model including those of the ”first

stage” equation explaining the endogenous covariate which is particularly difficult in the

frequentist framework. Even uncertainty due to estimating the corresponding smoothing

parameters is taken into account. Moreover, we do not have to make any distributional

assumption, i.e. also asymmetric bands can be obtained.

We follow Krivobokova et al. (2010) and obtain Bayesian simultaneous credible bands

from scaling the pointwise credible intervals derived from the α/2 and 1− α/2 quantiles

of the function samples from the MCMC output with a constant factor until (1−α)100%

of the sampled curves are contained in the credible band. Thereby, the information on the

possibly nonnormal error distribution is preserved and the complete variability is taken

into account without overly demanding computationally effort.
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4 Simulations

4.1 Parametric Model

In this section, settings with linear covariate effects are simulated in order to compare the

Bayesian approach to the well-established 2SLS estimator showing that it is capable of

correcting endogeneity bias and that in the cases of outliers in the error distribution and

nonlinear conditional means, the Bayesian approach outperforms the 2SLS procedure.

Thus, this section supplements the studies of Conley et al. (2008) where normal and

log-normal error distributions were simulated. We consider the basic model

y2 = y1 + z2 + ε2, y1 = z1 + z2 + ε1

where z2 and z1 are independently uniformly distributed on [0, 1] and all coefficients are

equal to 1. We consider four different bivariate distributions for the error terms:

(i) a simple bivariate normal distribution with a quite high degree of endogeneity

 ε1

ε2

 ∼ N


 0

0

 ,

 1 0.7

0.7 1


 .

(ii) a mixture of two normal distributions that adds outliers (with very small correlation

ρ = 0.1) on (i):

 ε1

ε2

 ∼ 0.95 N


 0

0

 ,

 1 0.7

0.7 1


+ 0.05 N


 0

0

 ,

 5 0.5

0.5 5


 .

(iii) a mixture of four bivariate normals with weights 0.3, 0.2, 0.3 and 0.2, means

(2, 2)t, (1.5, 0.5)t, (−0.3, 0)t and (−1,−1)t, all variances (in each mixture com-

ponents and both equations) equal to 0.1 and correlations 0.5, 0.2, 0.6 and 0.8

between the equations. This setting is an example of (unobserved) heterogeneity
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with varying degrees of endogeneity in each cluster.

(iv) a symmetric bivariate distribution which is conditionally normal with nonlinear

conditional mean, i.e. ε1|ε2 ∼ N
(

4
ε22+1

, 1
ε22+1

)
and vice versa for ε2|ε1 (Meng and

Gelman, 1991). Note that the degree of endogeneity varies over observations.

Densities of example draws from distributions in (iii) and (iv) are shown in Figure 1.

Obviously, the strength of the instruments as well as the degrees of endogeneity vary

over the settings. In each setting, we simulated 500 Monte Carlo replications with rather

small and moderately large sample sizes n = 100, 400. For our DPM approach, the

initial 3000 iterations are discarded for burn-in and every 30th iteration of the subsequent

30.000 iterations is used for inference. As discussed in Section 2.4, we choose a weakly

informative prior on the error distribution with sΣ = 3, SΣ = diag(0.2, 0.2), µ0 = (0, 0)t

and aα = bα = 2. Labeled as ”DPM1”, we consider first a fixed τΣ chosen according

to Conley et al. (2008)’s assessment strategy based on the observation that the errors

are marginally t-distributed and thus µr ∼
√
SΣrr/τΣ(sΣ − 1) tsΣ−1. Considering that the

data were centered and standardized, τΣ is then chosen such that P (−10 < µr < 10) = 0.8

which results in τΣ = 0.036 given sΣ = 3 and SΣ = 0.2I2. Second, we consider a weakly

informative gamma distribution for τΣ with aΣ = 1 and bΣ = 100, labeled as ”DPM2” in

the following.

In simulation settings (i) (Table 1) and n = 100, the DPM approach performs overall

better than 2SLS especially in terms of variability of the point estimates. Particularly,

the RMSEs (evaluated at the design points) are considerably lower for the DPM approach.

Note that 6.6% of the 2SLS estimates even had a negative sign (versus virtually none in

the DPM approach with 0.6% and 0.2%, respectively). In setting (i), the DPM approach

with gamma prior on τΣ performs only slightly better than with fixed τΣ. This becomes

more pronounced in setting (ii) (Table 2, n = 100), however, where in presence of outliers,

assigning a hyperprior is clearly preferable. While RMSEs of 2SLS increase in presence

of outliers in setting (ii), this was not the case for the DPM estimator. For the larger

sample size n = 400, 2SLS and the DPM approach perform almost identically well and

as expected, the impact of the prior on τΣ diminishes. Note that in settings (i) and

(ii) instruments are very weak with a population R2 of R2
pop = Var(z1)

Var(z1)+Var(z2)+σ2
1

=

1/12

1/12+1/12+σ2
1
≈ 0.07 and even slightly lower in setting (ii).

18



eps1

eps2

D
ensity

−3 −1 1 2 3 4

0.
0

0.
1

0.
2

0.
3

ε1

D
en

si
ty

−3 −1 0 1 2 3 40.
00

0.
10

0.
20

0.
30

ε2

D
en

si
ty

ε1

ε 2

 0.02 

 0.04 

 0.06 

 0.06 

 0.08 

 0.08 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

0 2 4 6

0
2

4
6

−2 0 2 4 6 80.
00

0.
10

0.
20

0.
30

ε1

D
en

si
ty

−2 0 2 4 6 80.
00

0.
10

0.
20

ε2

D
en

si
ty

Figure 1: Joint and marginal densities in one Monte Carlo draw of simulation setting
(iii) (top panels) and setting (iv) (bottom panels).

In settings (iii) and (iv) (Tables 3 and 4), both actually examples of nonlinear conditional

residual means, bias, RMSE and IQR of the 2SLS estimators are excessively large in the

case of n = 100 while those of the DPM estimator are considerably lower. Due to the

strongly increased widths of the 2SLS confidence intervals, coverage probability of the

intervals are, however, still close to the nominal level. Still, this also has an impact on

the power of detecting a significant positive effect: On a 5% level, rejection rates of 59%

and 32% for the 2SLS estimator for settings (iii) and (iv), respectively, were observed

versus 100% for the DPM estimator. In these two settings, the DPM estimator with fixed

τΣ performed best, since estimation of τΣ increased variability in DPM2. Here, also for

n = 400, due to the nonlinear conditional means, the DPM approach performs better than

2SLS in terms of efficiency (MSE and IQR) and interval widths. Again, the importance

of the prior on τΣ diminishes for increasing sample size.
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Table 1: Simulation setting (i): Bivariate normality.

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS 0.65 0.64 0.65 0.09 0.00 0.29 0.28 1.00
2SLS -0.18 -0.02 0.79 0.53 0.93 3.22 1.47 0.61
DPM1 -0.08 -0.05 0.40 0.49 0.97 2.03 1.73 0.43
DPM2 -0.03 -0.01 0.32 0.42 0.97 1.76 1.55 0.51

n = 400
OLS 0.65 0.65 0.65 0.05 0.00 0.14 0.14 1.00
2SLS -0.01 0.00 0.18 0.24 0.96 0.72 0.69 0.98
DPM1 -0.04 -0.03 0.19 0.25 0.97 0.80 0.75 0.91
DPM2 -0.04 -0.02 0.19 0.24 0.96 0.78 0.74 0.94

Table 2: Simulation setting (ii): Bivariate normality with outliers.

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS 0.55 0.56 0.56 0.16 0.00 0.32 0.32 1.00
2SLS -0.00 -0.01 3.10 0.56 0.94 93.40 1.55 0.59
DPM1 -0.06 -0.04 0.39 0.46 0.96 2.04 1.79 0.42
DPM2 0.01 0.03 0.31 0.42 0.95 1.57 1.37 0.63

n = 400
OLS 0.54 0.55 0.55 0.08 0.00 0.16 0.16 1.00
2SLS -0.01 0.01 0.20 0.26 0.95 0.80 0.76 0.96
DPM1 -0.04 -0.01 0.19 0.24 0.96 0.80 0.76 0.93
DPM2 -0.03 -0.01 0.18 0.23 0.96 0.77 0.74 0.95

4.2 Nonparametric Model

In our first two settings with nonparametric covariate effects, we replicate DGPs 1 and 4 of

Su and Ullah (2008) aiming at getting some insight into the comparison of our Bayesian

approach with Pinkse (2000)’s, Newey and Powell (2003)’s and Su and Ullah (2008)’s

approaches. Moreover, we compare our results with Marra and Radice (2011)’s approach

(extending the control function approach of Newey et al. (1999) to penalized splines).

Thus, we consider settings
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Table 3: Simulation setting (iii): Mixture of bivariate normals (unobserved clusters).

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS 0.77 0.77 0.77 0.06 0.00 0.17 0.17 1.00
2SLS -0.50 0.01 10.41 0.50 0.92 193.46 1.55 0.59
DPM1 0.11 0.11 0.16 0.17 0.92 0.61 0.60 1.00
DPM2 0.12 0.13 0.18 0.18 0.93 0.69 0.68 1.00

n = 400
OLS 0.77 0.77 0.77 0.02 0.00 0.08 0.08 1.00
2SLS -0.04 -0.00 0.24 0.26 0.94 0.90 0.79 0.89
DPM1 0.03 0.03 0.07 0.08 0.94 0.27 0.26 1.00
DPM2 0.03 0.04 0.07 0.09 0.95 0.28 0.28 1.00

Table 4: Simulation setting (iv): Nonlinear conditional mean.

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS -0.82 -0.82 0.82 0.07 0.00 0.22 0.22 0.87
2SLS -0.81 -0.08 16.66 0.79 0.91 557.31 2.24 0.32
DPM1 -0.05 -0.05 0.14 0.18 0.94 0.57 0.56 1.00
DPM2 -0.06 -0.07 0.15 0.20 0.98 0.74 0.72 1.00

n = 400
OLS -0.81 -0.81 0.81 0.04 0.00 0.11 0.11 1.00
2SLS 0.06 -0.04 0.38 0.38 0.93 1.45 1.09 0.94
DPM1 -0.02 -0.02 0.07 0.10 0.95 0.27 0.27 1.00
DPM2 -0.03 -0.03 0.08 0.10 0.96 0.31 0.31 1.00

(a) DGP1 of Su and Ullah (2008):

y2 = log(|y1 − 1|+ 1)sgn(y1 − 1) + ε2, y1 = z1 + ε1

with z1
i.i.d.∼ N(0, 1) and

 ε1

ε2

 i.i.d∼ N


 0

0

 ,

 1 θ

θ 1


.

(b) DGP4 of Su and Ullah (2008):

y2 = 2Φ(y1) + ε2, y1 = log(0.1 + z2
1) + ε1
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with Φ(·) the cdf of the standard normal and ε2 = θw + 0.3v2, ε1 = 0.5w + 0.2v1

and z1i = 1 + 0.5z1,i−1 + 0.5vz.

In settings (b.ii) and (b.iii) the error distribution in (b) is replaced by the distributions in

settings (ii) and (iii) of the previous section, respectively. In setting (b.v), the distribution

in (b) is replaced by one of the distributions given in Marra and Radice (2011) which

exactly resembles the structural assumptions of the control function approach:

ε1 = g1(w) + v1, ε2 = g2(w) + v2

with w ∼ U(0, 1), g1(w) = − exp(−3w) and g2(w) = −0.5(w + sin(πx2.5)) standardized

to have variance one and v1, v2
i.i.d.∼ N(0, 1). Note that in settings (b) and (b.v), w can be

considered as an omitted variable with linear and nonlinear effects, respectively.

Again, 500 Monte Carlo replications with n = 100, 400 are considered. For the Bayesian

approach, we use a burn-in of 5.000 iterations and use 1.000 of the subsequent 40.000

iterations for estimation. Further, cubic B-splines based on 25 and 40 knots for sample

sizes of 100 and 400, respectively, and a second-order random walk prior were used for

the Bayesian P-splines.

In Table 5, mean RMSEs and coverage rates of 95% simultaneous credible bands (when

available) for DGP 1 and 4 of Su and Ullah (2008) (settings (a) and (b)) are given. We

compare naive (i.e. without bias correction) estimation using local linear regression (with

normal kernel) and LSCV smoothing parameter selection (as Su and Ullah (2008) did)

and the two step control function approach using penalized splines (we used cubic B-

splines with second order difference penalty and same number of knots as for the DPM

approach) with GCV smoothing parameter selection following Marra and Radice (2011) to

our DPM approach (with hyperparameter settings DPM1 and DPM2 as in the previous

subsection). As a benchmark, we give the results for the models using the true but

unobserved y2 − E(ε2|ε1) as response.

We find RMSEs for all estimators that are considerably smaller than those given in Su

and Ullah (2008). Note that we even obtained better results for the naive estimator using

LSCV. This is most probably due to the fact that while we used a numerical minimization

algorithm with a random starting value to minimize the LSCV criterion, Su and Ullah

(2008) (personal communication) chose the bandwidth h according to h = c
√

Var(y1)n−1/5
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Table 5: Setting (a) and (b): DGPs of Su and Ullah (2008)

DGP1 DGP4
n=100 n=400 n=100 n=400

θ RMSE coverage RMSE coverage RMSE coverage RMSE coverage

0.2 naive (LSCV) 0.242 – 0.183 – 0.154 – 0.136 –
naive (Bayes) 0.228 0.912 0.173 0.766 0.145 0.466 0.131 0.012
DPM1 0.213 0.980 0.117 0.978 0.075 0.976 0.042 0.988
DPM2 0.213 0.982 0.117 0.980 0.075 0.972 0.042 0.980
CF with GCV 0.242 – 0.129 – 0.087 – 0.045 –
benchmark (Bayes) 0.182 0.980 0.105 0.988 0.061 0.992 0.037 0.992

0.5 naive (LSCV) 0.395 – 0.361 – 0.336 – 0.322 –
naive (Bayes) 0.389 0.408 0.365 0.000 0.331 0.010 0.318 0.000
DPM1 0.206 0.970 0.113 0.982 0.108 0.968 0.058 0.982
DPM2 0.207 0.968 0.113 0.978 0.108 0.968 0.058 0.976
CF with GCV 0.231 – 0.122 – 0.127 – 0.064 –
benchmark (Bayes) 0.165 0.968 0.094 0.988 0.061 0.992 0.037 0.992

0.8 naive (LSCV) 0.585 – 0.564 – 0.519 – 0.505 –
naive (Bayes) 0.582 0.002 0.571 0.000 0.521 0.002 0.507 0.000
DPM1 0.186 0.960 0.100 0.974 0.149 0.960 0.079 0.974
DPM2 0.187 0.958 0.100 0.970 0.149 0.962 0.079 0.970
CF with GCV 0.209 – 0.106 – 0.175 – 0.090 –
benchmark (Bayes) 0.122 0.976 0.069 0.984 0.061 0.992 0.037 0.992

with a limited grid search over c. Thereby, they obtained RMSEs that only slightly

changed with increasing degree of endogeneity which is rather implausible. While both

the control function and DPM approach decreased the mean RMSE compared to the

naive estimator, the DPM approach performed slightly better with negligible impact of

the prior choice.

Table 6 gives results for settings (b.ii), (b.iii) and (b.v). In settings (b.ii) and (b.iii)

(outliers and multimodal error density, unobserved heterogeneity) the control function

approach is clearly outperformed by the DPM approach. Figure 2 shows the estimated

curves in the first 50 simulation runs of setting (b.iii) illustrating that estimates of the

control function approach can be seriously confounded when E(ε2|ε1) is not a smooth

function. Clearly, this cannot be only attributed to the higher variability of the cross-

validated smoothing parameter of f̂21(y1). Also in setting (b.v), the DPM approach

performs better although not as pronounced.

In all settings, the DPM approach provides simultaneous credible bands with frequentist

coverage rates above the nominal level. That is, the credible bands were successful in
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Table 6: Settings (b.ii), (b.iii) and (b.v): More complex distributions

(b.ii): Outliers (b.iii): Mixture Distribution (b.v): Omitted Variable
n RMSE coverage RMSE coverage RMSE coverage

100 naive (Bayes) 0.610 0.030 0.922 0.000 0.634 0.084
DPM1 0.268 0.976 0.124 0.980 0.395 0.958
DPM2 0.262 0.974 0.121 0.974 0.393 0.962
CF with GCV 0.409 – 0.339 – 0.435 –
benchmark (Bayes) 0.213 0.836 0.060 0.990 0.195 0.974

400 naive (Bayes) 0.580 0.000 0.926 0.000 0.616 0.000
DPM1 0.154 0.974 0.059 0.982 0.228 0.940
DPM2 0.153 0.974 0.058 0.982 0.224 0.938
CF with GCV 0.355 – 0.163 – 0.243 –
benchmark (Bayes) 0.142 0.742 0.034 0.994 0.115 0.974

taking into account all the variability in the estimation. On the other hand, the credible

bands are slightly conservative in a frequentist coverage sense which is unsurprising since

this is a well-known property of Bayesian credible bands also observed in Krivobokova

et al. (2010) in the single equation case. Note that for the control function approach as

well as for the approaches compared in Su and Ullah (2008), no simultaneous confidence

bands are available.

In summary, the proposed approach outperformed the control function approach based

on GCV smoothing parameter selection and the estimators of Pinkse (2000), Newey and

Powell (2003) and Su and Ullah (2008) (relying on the results given in Su and Ullah

(2008)). This shows the extreme importance of the smoothing or tuning parameter which

can hardly be estimated in the frequentist approaches. Moreover, only our Bayesian

approach provided us with simultaneous credible bands which performed extremely well

even in the case of rather complex error distributions and small sample sizes.

5 Class Size Effects on Student Achievements

In a very influential paper, Angrist and Lavy (1999) analyzed the effect of class size on

4th and 5th grades students tests scores in Israel. Among others they consider the model

tscoreji = γ20 + γ21csizeji + γ22disadv ji + νj + ε2ji
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Figure 2: Setting (b.iii): Estimated curves in first 50 simulation runs for n = 100.

where tscoreji is the class level average of a reading comprehension test score, csizeji the

number of students and disadv ji the fraction of disadvantaged students in class i of school

j, respectively. Further, νj is a school-specific random effect.

To deal with the endogeneity of csizeji due to non-random assignment of class sizes, they

define the predicted class size pcsizeji of class j in school i as an instrument given by

pcsizeji =
enrolj

int[(enrolj−1)/40]+1
,where enrol j is the beginning of the year enrollment in school

j for a given grade and int(k) is the largest integer less or equal to k.

Then, using a sample of 2019 public schools and assuming a first stage equation

csizeji = γ10 + γ11pcsizeji + γ12disadv ji + ε1ji

they fit the model using 2SLS and find, for fourth and fifth graders, class size effects of

−0.110 and −0.158, respectively, with standard errors of 0.040 each resulting in the con-

clusion of a significantly negative effect on the reading comprehension test score. When

applying our DPM approach to the parametric model specification, i.e. when simply

replacing the Gaussian errors with DPM error terms but leaving the model equations
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unchanged, we obtain class size effects of −0.103 and −0.108 (with hyperparameter set-

ting ”DPM2”). Hence, we find virtually no difference between 4th and 5th graders and

estimates close to the 2SLS estimate for 4th graders.

As a robustness check for validity of the instrument, Angrist and Lavy (1999) add linear,

quadratic and piecewise linear effects of enrollment to the equations and find that this has

quite an impact on the estimated coefficients for class size (ranging between −0.074 and

−0.147 and between −0.186 and −0.275 for fourth and fifth graders, respectively). That

is, inclusion of enrol and the functional form of its effect (which is roughly approximated

by a few parametric specifications) affects the estimated class size effect. Furthermore, a

violation of the linearity assumption on the class size effect cannot be ruled out and there

may be a positive effect for small classes which vanishes for larger classes. This would

correspond to a nonlinear effect, which could not properly be identified by a simple linear

model. Thus, we relax the assumption of linear effects and extend the model of Angrist

and Lavy (1999) to the following specification

tscoreji = γ20 + f21(csizeji) + f22(disadv ji) + f23(enrol j) + ε2ji, (6)

csizeji = γ10 + γ11pcsizeji + f12(disadv ji) + f13(enrol j) + ε1ji. (7)

Note that inclusion of random school effects νrj ∼ N(0, σ2
νr) with inverse gamma priors

on the variance parameters σ2
νr ∼ IG(aσνr , bσνr ), r = 1, 2 in both equations capturing

within-school correlations of class average scores did not change the results substantively

but basically only increased the widths of the confidence bands slightly and are therefore

not discussed further. Also note that within-school correlations will be generally positive

and thus will increase confidence band width (given point estimates do not change) such

that given confidence bands will not underestimate estimation precision.

Figure 3 shows estimated smooth effects for 4th graders (top panels) and 5th graders

(bottom panels) in Equation (6) (solid black lines) jointly with 95% pointwise credible

intervals (gray areas) and 95% simultaneous credible bands (areas between black dashed

curves). On the left hand side, class size effects together with 2SLS estimates in the model

excluding enrol (gray solid line) and including a linear (gray dashed line) and quadratic

effect (gray dotted line) of enrol are given. All results are based on hyperparameter

specification ”DPM2”, results with ”DPM1” were very similar.
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Figure 3: Estimated effects for 4th (top) and 5th grade (bottom) students. Solid black
lines show smooth curves in Equation (6) with 95% pointwise (gray areas) and simulta-
neous (areas between dashed lines) credible bands. 2SLS results for different parametric
specifications of enrolment are given by gray lines.

Regarding 4th grade students, no significant class size effect is found. This does not mean,

however, that there is none, the data (and instrument) might just be not informative

enough. Note that using 2SLS, the functional form specification of the enrolment effect

(not included, linear, quadratic or piecewise linear) has a relatively strong impact on the

class size coefficient. In contrast, using the nonparametric DPM approach, inclusion of a

smooth effect of enrolment barely influenced the class size effect and therefore results for

the model without enrolment are omitted. Revealed by the simultaneous credible bands,

estimation uncertainty is excessively high particular for class sizes smaller than 20 casting

interpretability of point estimates into doubt. If, however, one is willing to do so, we find

indeed a negative relationship between class size and student performance for small class

sizes (less than 25 students) and no association as soon as this ”threshold” is exceeded.

For fifth grade students, again estimation uncertainty is too high to draw reliable conclu-

sions on the impact of csize on students performance and its functional form. Note that
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Figure 4: Estimated marginal and joint error densities for 4th (top) and 5th grade (bottom)
students.

we find a significant deviation from the 2SLS fit (in models including enrolment). Also

note that pointwise intervals (gray areas in Figure 3) clearly understate the uncertainty

(for the whole curve) and interpreting them would lead to the conclusion of a significant

effect, which is however not justified.

For both grades, the estimated curves f̂22(disadv) (see Figure 3 middle plots) significantly

deviate from the linear estimates obtained from 2SLS (gray straight lines). Such a mis-

specification of the functional form of the effect of a control variable can of course also

affect the estimated class size effect. The smooth effects of enrolment are highly nonlinear

but not significant for both grades.

We find clearly nonnormal error densities in Figure 4. The error density for the first equa-

tion has a distinct peak while both densities show some slight indication of asymmetry.

It is also interesting to note that using the proposed approach we obtain γ̂11 ≈ 0.99 in the

first stage equation which is very close to the theoretically expected coefficient equal to

1. Angrist and Lavy (1999) obtained coefficient estimates of 0.772 and 0.670 and of 0.702

and 0.542 for fourth and fifth graders, respectively, and depending on whether (a linear

effect of) enrol was included or not. Thus, they obtain substantially smaller coefficients
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than expected leading to different bias correction. Differences most likely occur due to

different handling of outliers in 2SLS and the Bayesian model based on the DPM prior.

Finally, note that Horowitz (2011) analyzed the same data with a bivariate smooth func-

tion of csize and disadv . They also find no significant class size effect (though only

reporting results for disadv = 1.5).

6 Conclusion

We presented a flexible, nonparametric approach for models with one endogenous regres-

sor. The advantages include the availability of simultaneous credible intervals, which

naturally incorporate the variability of estimation of the instrumental variable equation

and data-driven smoothing parameter selection which is particularly difficult in two-step

frequentist approaches. They also work well in small samples and are not only asymptot-

ically correct. We do not rely on a normality assumption such that violations of bivariate

normality will not affect estimates and more efficient interval estimates are provided. In

our simulation study, we show that the approach based on the DPM is quite robust in

case of outliers making the Bayesian approach advantageous even in the parametric con-

text, where although 2SLS methods are consistent they are sensitive to outliers in finite

samples. Our method can also easily be extended to incorporate additive spatial effects

based on Gaussian Markov random field priors, smooth interaction terms and varying

coefficients based on the framework of structured additive regression (Fahrmeir et al.,

2004).

In our application, we found that without imposing linearity on effects, no reliable con-

clusions on the relationship between class sizes and student performance can be drawn.

Interesting questions for future research include the incorporation of discrete endogenous

variables and binary/categorical outcomes of interest as well as nonparametric sample

selection models adjusting the error density estimation in Wiesenfarth and Kneib (2010).

Our results can also be used for seemingly unrelated regression (SUR) extending Lang

et al. (2003). The approach is implemented in the user-friendly R package bayesIV.
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A Appendix

A.1 Full Conditionals

In the following, full conditionals for the parameters in the r-th equation, i.e. r = 1 for

equation (4) and r = 2 for equation (3), are given.

Nonparametric effects The full conditionals for the regression coefficients of the

smooth functions are Gaussian

βr`|· ∼ N(µβr` , P
−1
βr`

)

with precision matrix

Pβr` = X t
r`Σ
−1
r|−rXr` +

∆r`

τ 2
r`

where ∆r` is the penalty matrix of nonparametric effect (r`) based on a random walk

prior and mean

µβr` = P−1
βr`
X t
r`Σ
−1
r|−r(yr − η̃r − E(εr|ε−r))

where η̃r = ηr − fr` when fr` is to be estimated. Further, E(εr|ε−r) with εr =

(εr11, . . . , εrnnn)t is the conditional mean of the error terms with

E(εrij|ε−r,ij) = µrij +
σ12,ij

σ2
−r,ij

(y−r,ij − µ−r,ij − η−r,ij)

and Σr|−r is the conditional covariance matrix with Σr|−r = diag(σ2
(r|−r),11, . . . , σ

2
(r|−r),nnn)

and

σ2
(r|−r),ij = Var(εrij|ε−r,ij) = σ2

rij −
σ2

12,ij

σ2
−r,ij

.

Note that the posterior mean of some function fr` is given by (subject to centering con-

straints)

fr`(·) = (X t
r`Σ
−1
r|−rXr` +

1

τ 2
r`

∆r`)
−1X t

r`Σ
−1
r|−r(yr − η̃r − E(εr|ε−r)).
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Here, it can be easily seen that the DPM prior induces different variances and therefore

Σr|−r weighs observations accordingly just as in the case of heteroscedasticity.

The full conditionals for the smoothing variance parameters τ 2
r`, ` = 1, . . . , pr, r = 1, 2

follow inverse Gamma distributions

τ 2
rl|· ∼ IG(a′τr` , b

′
τr`

)

with parameters

a′τr` = aτr` +
rank(∆r`)

2
, b′τr` = bτr` +

1

2
βtr`∆r`βr`.

Parametric effects The full conditionals for the coefficients γr of parametric effects

are Gaussian

γr|· ∼ N(µγr , P
−1
γr )

with precision matrix Pγr = V t
r Σ−1

r|−rVr

and mean µγr = P−1
γr V

t
r Σ−1

r|−r(yr − η̃r − E(εr|ε−r))

where η̃r = ηr − Vrγr.

Components of the error distribution In our default implementation, we make use

of R function DPdensity (Jara et al., 2011) for error density estimation adopting algorithm

8 of Neal (2000) with one temporarily existing auxiliary parameter. In the following, the

full conditionals are summarized, for more details see Neal (2000).

• Let ci ∈ {1, . . . , K∗}, i = 1, . . . , n indicate the cluster observation i belongs to.

For i = 1, . . . , n:

– If ci = ch for some h 6= i, create auxiliary component c∗ with (µc∗ ,Σc∗) drawn

from G0.

– If ci 6= ch for all h 6= i, let c∗ = ci with (µc∗ ,Σc∗) = (µci ,Σci).
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– Draw a new value for ci using

ci|c−i, y1i, y2i, µ1,Σ1, . . . , µK∗ ,ΣK∗ , µc∗ ,Σc∗ ∼ b
k−∑
l=1

n−il
n− 1 + α

F ((ε1i, ε2i), µl,Σl)

+b
α

n− 1 + α
F ((ε1i, ε2i), µc∗ ,Σc∗)

where k− is the number of distinct ch for h 6= i, n−il is the number of ch for

h 6= i that are equal to l, b is a normalizing constant and F ((ε1i, ε2i), µl,Σl)

the likelihood for observation i.

• Discard those µl,Σl that are not associated with one or more observations.

• For all l ∈ {c1, . . . , cn}: Update µl and Σl using µl|· ∼ N(mµl , P
−1
µl

) and Σl|· ∼
IW(s′Σ, S

′
Σ) with

mµl = (τΣ + 1)−1

(
τΣµ0 +

∑
i:ci=l

((y1i, y2i)− (η1i, η2i))
t

)

P−1
µl

=
τ−1

Σ

1 + τ−1
Σ

Σl/nl = (τΣ + 1)−1Σl/nl,

s′Σ = sΣ +
nl
2

S ′Σ = SΣ +
1

2

1

1 + τ−1
Σ

∑
i:ci=l

((y1i, y2i)− (η1i, η2i)− µ0)t ((y1i, y2i)− (η1i, η2i)− µ0)

• In case τΣ is not fixed, the full conditionals of τΣ are

τΣ ∼ Ga

(
aΣ +K∗

2
,

1

2

(
bΣ +

K∗∑
l=1

Σ−1
l (µl − µ0)2

))

• The concentration parameter α in case of a gamma prior is drawn from a mixture

of two gamma distributions

α|· ∼ aα +K∗ − 1

n(bα − logω)
Ga (aα +K∗, bα − logω)+

(
1− aα +K∗ − 1

n(bα − logω)

)
Ga (aα +K∗ − 1, bα − logω)
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where ω is a latent variable sampled from a beta distribution ω ∼ Be(α + 1, n).

In case of a discrete prior for α as in Conley et al. (2008), α is drawn from a

multinomial distribution. See Conley et al. (2008) for details.
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