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Abstract

We present a nonparametric method to decompose a times series into trend, seasonal

and remainder components. This fully data-driven technique is based on penalized

splines and makes an explicit characterization of the varying seasonality and the

correlation in the remainder. The procedure takes advantage of the mixed model

representation of penalized splines that allows for the simultaneous estimation of all

model parameters from the corresponding likelihood. Simulation studies and three

data examples illustrate the effectiveness of the approach.

Key Words: Penalized splines, Mixed model, Varying coefficient, Correlated re-

mainder.

1 Introduction

There are many approaches in the literature to the problem of trend extraction from

a time series. The interested reader can refer to Alexandrov et al. (2012) or Pollock

(2006) for a detailed discussion on the history of the problem, and the advantages and

disadvantages of the different alternatives available to treat it. In general, detrending

methods can be grouped in one of the following classes: the model based approach, non-

parametric filtering, singular spectrum analysis and wavelets. The model based approach

is the de facto tool in economics, even though it requires a specification of the structure

of the time series under analysis by either an ARIMA or an state-space model (see e.g.

1Courant Research Center “Poverty, equity and growth” and Institute for Mathematical Stochastics,
Georg-August-Universität Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
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Findley et al., 1998; Maravall and Caporello, 2004). Non-parametric methods, in contrast,

do not require such specification and are popular because of their simplicity. Among the

most cited approaches are the filters proposed by Henderson (1916), Hodrick and Prescott

(1997) and Cleveland et al. (1990). Singular spectrum analysis and Wavelets are most

commonly used in geosciences, but their applications in economics have increased in recent

years (see e.g. Pollock and Cascio, 2007; Ramsay and Lampart, 1998).

In general, all nonparametric techniques used for detrending of time series have two main

drawbacks: the remainder structure is not modelled explicitly (and is left unspecified)

and the smoothing parameter choice is done in a not data-driven way, which ultimatly

can lead to a wrong decomposition. The method we develop in this article, allows for the

simultaneous decomposition of a time series into a smooth overall trend, a seasonal compo-

nent (which can vary over time) and a remainder component, modeled as an ARMA(p, q)

process. Thereby, all model components, including smoothing and covariance matrix pa-

rameters are estimated in a single run, optimizing an appropriate likelihood function. We

investigate the properties of our detrending technique in a simulations study and present

several real-data examples.

The paper is organized as follows: in Section 2 we introduce the method and propose

a procedure to select the input parameters for the model. Section 3 shows a Monte

Carlo simulation study that compares the results of our method with the STL procedure

developed by Cleveland et al. (1990). The application of the method is then illustrated

by data examples in Section 4. Section 5 presents some conclusions and closes the paper.

2 Decomposition of time series with splines

Consider a smooth decomposition scheme of a time series

y(ti) = τ(ti) + ς(ti) + ε(ti), i = 1, . . . , n, (1)
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where τ(t) is an unknown smooth function that represents an overall trend, ς(t) is a

function that describes seasonal fluctuations and ε(t) is an ARMA(p, q) process. The

seasonal component will be modelled as ς(ti) = α(ti) cos(tiω) + γ(ti) sin(tiω) where α(t)

and γ(t) are unknown smooth functions that modulate the seasonal pattern over time

(varying coefficients). In principle, ς(t) can easily be generalized to include components

with different frequencies and corresponding varying coefficients. Subsequently, we show

the estimation of (1) with ς(ti) = α(ti) cos(tiω) only, stating that the extension to more

components is immediate. Additionally we will refer to f(ti) = τ(ti)+ ς(ti) as the smooth

part of the decomposition.

Assuming that parameters p, q and ω are known, let map the time span into the unit

interval [0, 1] as xi = ti/
∑n

i=1 ti and employ low-rank spline smoothing to estimate (1).

That is, smooth functions τ and α are estimated by splines solving

min
sτ∈Sτ ,sα∈Sα

[
1

nσ2

n∑
i=1

n∑
j=1

{y(xi)− sτ (xi)− sς(xi)}R−1ij {y(xj)− sτ (xj)− sς(xj)}

+ λτ

∫ 1

0

{sτ (x)(mτ )}2dx+ λα

∫ 1

0

{sα(x)(mα)}2dx
]
, (2)

where sς(x) = sα(x) cos(xω) and R−1ij is the (ij)th element in the inverse of covariance

matrix R(φ) = σ2 Cor{ε(ti), ε(tj)}ni,j=1, with a (p + q)-dimensional parameter φ of an

ARMA(p, q) process. Sj, j ∈ {τ, α} denote spline spaces of degree 2mj − 1, which are

based on kj knots and hence consist of 2mj − 2 times differentiable functions, that are

polynomials of degree 2mj − 1 between each two consecutive knots. To solve (2) we make

the following assumptions.

(A1) τ ∈ Wmτ [0, 1] and α ∈ Wmα [0, 1], where Wm[0, 1] is the Sobolev space of functions

with m− 1 continuous derivatives and integrable mth derivative.

(A2) Both, observations and spline knots, are equidistant.

(A3) The numbers of knots kj, j ∈ {τ, α} satisfy kj = constnνj , νj ∈ (1/(2mj), 1), where
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“const” denotes a generic positive constant.

Since Sj is a linear space of dimension kj + 2mj, each spline function sτ , sα can be repre-

sented as a linear combination of some basis functions of Sj. The B-spline basis is popular

due to its numerical stability and will be used in our implementation. Denote the basis

matrix by Bj = {Bj(x1)
t, . . . ,Bj(xn)}t, where Bj(x) is a (kj + 2mj)-dimensional row

vector of B-spline basis of degree 2mj−1 based on kj knots, j ∈ {τ, α}. Representing now

sj(x) = Bj(x)θj, turn (2) into the minimization problem over θτ and θα. It remains to

estimate λτ , λα and φ. In principle, this can be done minimizing a version of the general-

ized cross validation (GCV) as a function of all these unknown parameters. However, it is

well-known that the GCV criterion can be extremely unstable and the resulting parameter

estimators have very large variance, see Krivobokova (2012). Therefore, we opt to make

use of the mixed model representation of penalized splines (see e.g. Wand, 2003), which

allows to estimate all the model parameters from the corresponding likelihood function

and is known to be much more stable than GCV and similar methods.

Let decompose each component Bjθj = Bj(F
j
bbj + F j

uuj) = Xjbj + Zjuj, so that it

holds (F j
u)
tF j

b = (F j
b)
tDjF

j
b = 0 and (F j

u)
tDjF

j
u = Ikj+mj , where Dj is such that∫ 1

0
{Bj(x)(mj)θj}2dx = θtjDjθj. This decomposition is not unique, since Dj is not of full

rank, but we follow the strategy suggested in Wood (2006). Thus, the best linear unbiased

predictor in the linear mixed model

Y = Xτbτ +Zτuτ + diag{cos(xω)} {Xαbα +Zαuα}+ ε, (3)

ε ∼ N
(
0n, σ

2R(φ)
)
, uj ∼ N (0kj+mj , σ

2
uj
Ikj+mj), j ∈ {τ, α},

for Y = {y(x1) . . . , y(xn)}t and ε = {ε(x1), . . . , ε(xn)}t, equals to the solution of (2)

with λj = σ2/σ2
uj

. From the likelihood function that corresponds to (3) one can estimate

simultaneously f(t) and all the covariance parameters, that is φ, σ2, σ2
uτ and σ2

uα , which is

readily implemented in any standard statistical software for mixed models (e.g. function
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lme in R).

To fit model (3), the number of knots kj and the penalization order mj need to be specified,

as well as parameters p, q and ω, which have been assumed known so far. Regarding the

number of knots kj, assumption (A3) reflects the result obtained in (Claeskens et al., 2009)

that, once enough knots are taken, increasing its number does not change the estimator in

terms of the average mean squared error. Hence, in practice, one can choose the number

of knots to be rather large (kτ = kα between 20 − 150, depending on the sample size),

but it can still be much smaller than the number of observations. Due to the smoothness

of the cosine function, the penalization order mα for the varying coefficient is of minor

importance and one can set it to the standard choice mα = 2. Thereafter, our main

concern will be in the selection of mτ , for which we set an initial value mτ = m∗τ that

helps us select all the other parameters, and whose value will be later updated making

use the criterion proposed by Krivobokova (2012), which, once adjusted to our model,

takes the form

mτ = argmin
mτ∈N

R(mτ ) = argmin
mτ∈N

∣∣Y t(In −Gς)(In − Sτ )Sτ
2(In −Gς)Y

−σ2
{

tr(S2
τ )−mτ

}∣∣ , (4)

with Sτ (R) = Cτ (C
t
τR
−1Cτ+Dτ )

−1Ct
τR
−1,Cτ = [Xτ ,Zτ ] andDτ = σ2/σ2

uτdiag{0mτ ,1kτ+mτ},

and Gς as defined in the appendix.

To select the starting value m∗τ we bring to bear the result of Krivobokova and Kauermann

(2007) (see also Kauermann et al., 2011). It is well-known, that the smallest error structure

misspecifications lead to a severely overfitted estimate of the regression function, if it

is obtained with GCV or similar criteria, see Opsomer et al. (2001). In contrast, the

estimator obtained from the mixed model representation of penalized splines is remarkably

robust to misspecifications of the remainder’s structure. That is, if the data follow (1),
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but the model

Y = Xτbτ +Zτuτ + ε, ε ∼ N (0n, σ
2R̃), (5)

is computed, the resulting estimator of τ̂ = Sτ (R̃)Y under some working correlation R̃ is

barely affected as long as the penalty order mτ is chosen appropriately. Hence, a possible

strategy to select an initial value for mτ could be through the visual inspection of the

trend estimations resulting from (5). Alternatively, if we interpret the action of matrix Sτ

(depending on mτ ) over Y as a low-pass filter (see e.g. Hastie and Tibshirani, 1990), we

could also select the penalty order inspecting the frequency domain of the filter’s transfer

function, see section 4 for more details.

With a starting value m∗τ , we proceed to determine parameters p, q and ω which can be

done by fitting an ARMA(p, q) model for the residuals resulting from (5). With all the

parameters selected we go back to criterion (4) and re-estimate mτ . All together, we fit

(1) by pursuing the following steps:

1. Fix kτ = kα to be sufficiently large (20− 150, depending on n).

2. Determine a working m∗τ fitting (5) for different values of mτ .

3. Estimate (5) under m∗τ and obtain the residuals.

4. Fit an ARMA(p, q) model with a seasonal component to the residuals of (5) to

determine p, q and ω.

5. Obtain the optimal mτ by applying the R(mτ ) criterion given in (4).

6. Estimate (3) with obtained mτ , mα = 2, kτ = kα, p, q and ω.

Of course, it can happen that the data have a more complicated structure, that can not

be described by (1). This will be evident if the remainder structure turns out to be non-

stationary, the estimated parameters of the ARMA(p, q) model lie close to the boundary
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of stationarity, or a single seasonal frequency is inadequate. In any of these cases, one can

try to include more frequencies, and/or to work with the first differences of the original

series.

3 Simulation study and comparison with STL

We generated n = 500 data points with the following setup for the decomposition scheme

(1) under xi = ti/
∑n

i=1 ti. The trend component is generated as τ(xi) = 6β30,17(xi)/10 +

4β3,11(xi)/10, with βr,s the beta function defined as βr,s(xi) = Γ(r + s){Γ(r)Γ(s)}s−1; the

seasonal component follows ς(xi) = α1.9,0.9(xi) cos(ωxi) where αu,v(xi) = (1/2π){1 + u2 +

v2+2u(v−1) cos(π(2xi−1))−2v cos(2π(2xi−1))}−1, with a period of 20 observations, i.e.

ω = 2π(n/20); and for the remainder component we simulate a first order autoregressive

process with autocorrelation coefficient equal to 0.4. Furthermore the trend, seasonal and

remainder components are re-scaled so their variances are 1, 0.5 and 0.1 respectively to

assure a reasonable signal-to-noise ratio.

Figure 1 shows a simulated time series with the setting previously detailed. To fit (1)

for this particular case we follow the strategy given in section 2. Namely, for mα = 2

and kτ = kα = 50, we start by selecting m∗τ by inspecting the fits of (5) under different

penalization choices. If the data were circular, the operation τ̂ = Sτ (R̃)Y obtained after

fitting (5) could be seen as a stationary invariant linear filter with a unique impulse-

response function κ(t) centered at the main diagonal of Sτ (R̃). The effect of this matrix

on input Y is usually explored by taking the Fourier transform of the impulse-response

function, i.e. K(ω) =
∑∞

j=−∞ exp{−iωtj}κ(tj), also called transfer function. Figure 2

shows the impulse-response function, its Fourier transform and the resulting estimated

trend for two choices of mτ when fitting (5). The gray line in panel (b) indicates the

frequency of the seasonal component in the generated data, and shows that for mτ = 2

the frequency response function of the trend component lie in a range of frequencies that
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covers the one characterizing the seasonal component, and hence captures both parts

indistinguishably. The selection of mτ = 5 on the other hand, seems more adequate and

it is what we chose in this example.

With the starting value m∗τ = 5 selected, we use the residuals in (5) to identify ω = 20,

p = 1 and q = 0. We then go back to (4) and verify that indeed mτ = 5 is the optimal

choice. All together, the estimation of (3) is set up with the following parameters: mτ =

5, mα = 2, kτ = kα = 50, p = 1, q = 0, ω = 20.

We continue by comparing the performance of the splines decomposition approach with

a benchmark alternative commonly used by practitioners, namely the STL procedure de-

veloped by Cleveland et al. (1990), which is another filtering method for decomposing a

time series into trend, seasonal and remainder components consisting on systematic appli-

cations of LOWESS (locally weighted scatterplot smoother). LOWESS was presented by

Cleveland (1979) as a smoothing method that performs a polynomial fit of degree d for a

response y on a locally weighted version of covariate x. The weighting function is defined

by a span parameter h as wi(x0) = W (|xi − x0|/δh(x0)) where δh(x0) is the distance of

the hth furthest xi from x0 and W (l) = (1− l3)3 for l ∈ [0, 1) and 0 otherwise.

The STL procedure is then built from systematic applications of the LOWESS smoother

embedded in two loops: an inner loop that performs a seasonal smoothing that updates

the seasonal component followed by a trend smoothing that updates the trend component;

and an outer loop executed for robustness.

Consider for example the case of monthly data with yearly seasonality. In thi scase the

updates at the (j + 1)th pass of the inner loop would be computed in the following way:

i) detrend the series with the jth update of the trend component by y(xi) − τ j(xi); ii)

build a set of cycle-subseries based on the detrended series by grouping all Januaries,

all Februaries, etc., smooth them with LOWESS, and build a (temporary) seasonal se-

ries cj+1(xi); iii) construct a low-pass filter of the (temporary) seasonal series Lj+1(xi);
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iv) update the seasonal series detrending cj+1(xi) by ςj+1(xi) = cj+1(xi) − Lj+1(xi); v)

deseasonalize the original time series with y(xi)− ςj+1(xi); and vi) update the trend com-

ponent by smoothing the resulting deseasonalized series by LOWESS and obtain τ j+1(xi).

With respect to the outer loop, its updates are performed for robustness and operate by

modifying the weighting functions in steps ii) and vi) of the inner loop so the effect of

aberrant observations in the data (measured by the local magnitude of the remainder) is

diminished.

At this point it is convenient to highlight that both the STL and the splines approach

are similar in various aspects. Most importantly, if we were to follow the circularity

assumption of the data for interpretation purposes (see e.g. Cleveland et al., 1990), both

methods could be seen as stationary symmetric linear filters for each of its components

modulated by different weighting (or impulse-response) functions. In addition, the two

of them can handle missing values, and both require the setting of various constants in

order to be implemented. However, there are also some differences that must be noticed.

An illustrative comparison between the STL and spline method to filter the simulated

time series is shown in Figure 3. For the splines method we set up the model with

mτ = 5, mα = 2, kτ = kα = 50, p = 1, q = 0, ω = 20, as indicated at the beginning

of this section, and for the STL procedure we consider dτ = 1, hτ = 39 for the trend

component and dς = 1, hς = 7 for the seasonal component. As it can be seen in panel

(a) of Figure 3, both methods produce very similar results for the trend component, up

to certain wiggliness in the STL case. We do not explore the performance of STL for

polynomials of degree greater than 1, and conclude that the differences between both

methods are small in magnitude.

With respect to the seasonal component, the differences between both approaches are

more notorious. Even though both procedures allow for the variation of the seasonal part

across time, the behavior of the STL fit seems to be much more variable. To understand
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the difference in the shape of both seasonal components we start by noting that while

the spline method performs smoothing for the data series along the index x, the STL

alternative does it for each cycle-subseries according to the span chosen for the LOWESS

window. Clearly, once the smoothed subseries are re-arranged according to the original

time sequence, a rough path can be observed. Furthermore, in this example we chose a

span window of size hς = 7 (a very small value when compared to the sample size n = 500),

which produces a high variance estimation for this component (with small bias). We based

our selection on the inspection of the seasonal-diagnostic plot under different scenarios

of hς , as suggested in Cleveland et al. (1990). In fact, to our knowledge, there is no

data-driven method for the selection of any of the STL parameters, including the crucial

smoothing parameter hς . Consequently, the seasonal component could be undersmoothed,

as it happens in this example.

Lastly, regarding the scatterplots of the remainders in panel (c) of Figure 3, we note

that the remainder part from the spline approach (black circles) follow better the true

remainder than those of the STL (gray circles), which is an obvious result of the better

performance of the spline method to fit the seasonal component, and, consequently, allows

for a more accurate characterization of an ARMA model for the remainder. Furthermore,

we stress the fact that in the splines procedure the estimation of the model for the re-

mainder part is performed simultaneously with the rest of parameters, as presented in (3),

and not in a follow up computation as would be in the STL case. The last panel of Figure

3 compares the estimations for the two methods of the trend and seasonal components

when plotted together.

We close this section by reporting the performance of the penalized splines method when

compared to the STL alternative in a Monte Carlo simulation study considering 500 real-

izations of the remainder component. The results are presented in terms of the component-

wise average mean squared error (AMSE) of each method and are illustrated in Figure 4.
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As expected from the example presented in Figure 3, the performance of both methods

is quite similar for the estimation of the trend with a slightly higher bias for the STL.

However, when it comes to comparing the seasonal parts, a clear superiority of the splines

procedure is revealed, showing to be less variable and more accurate than its counterpart.

4 Applications

In this section we present three examples in different resolutions to illustrate the ap-

plication of the method described in section 2. The first data set consists of hourly

temperature in California; the second one addresses weekly stock prices in Peru; and the

the third one is based on monthly prices of pork meat in the European Union. Based on

a previous inspection of the distribution of the residuals we consider appropriate to use

a log transformation of each time series, implying an underlying multiplicative structure

in decomposition (1).

4.1 Hourly Temperature in California

The source of the data is the United States’ National Climatic Data Center (NOAA)

and comprehends hourly averages of temperature in California measured in Fahrenheit

degrees. The sample covers the period 01/01/2010 – 01/31/2010, with a total of 744

observations.

To set up the model we start by fixing the number of knots to kτ = kα = 50. For

the selection of the other parameters we apply the strategy presented in section 2. A

classical spectral analysis on the residuals after fitting (5) with a starting value m∗τ = 4

showed the need for the inclusion of i) frequencies ω1 = 2π(744/24), ω2 = 2π(744/12) and

ω3 = 2π(744/6); and ii) a second order autocorrelation structure AR(2) to characterize

the remainder component. Lastly, the R(mτ ) criterion selected a penalization parameter

mτ = 3 for the trend component.

Figure 5 presents the decomposition of the temperature series during January 2010. The
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upper-most panel presents the data (gray line), the fitted trend component (black line)

and the addition the fitted trend and seasonal parts (dashed lines). As it can be seen,

the features of the original time series are replicated by the model, as the trend shows a

mildly positive slope (upper-most panel), and the magnitude of the seasonality seems to

be enlarged with time (middle panel). These features are expected since historically the

intraday temperature range is positively correlated with its level.

The two plots at the bottom panel of Figure 5 show that the selected characterization of

the remainder by an AR(2) is indeed appropriate. The gray lines show the behavior of

the remainder component and the black lines the residuals once the remainder is modeled

by such a process with φ1 = 0.43 and φ2 = −0.47, i.e. well inside the boundary region of

the parameter space for stationarity. As it can be seen the AR(2) process captures most

of the features in the structure of the remainder approximately up to lag 10. Nonetheless,

some structure is still observed in lags 8, 13 and 16, which can be attributed to the rapid

change in the slope of the underlying seasonal process, i.e. periodic singularities that are

outside the scope of the method.

4.2 Weekly Stock Prices in Peru

We analyze the decomposition of a stock price in a typical illiquid financial market. The

data records the closing price of a mining corporation devoted mainly to the extraction

of cooper (with ticker MOROCOI1) at the end of each week between 01/05/1996 and

07/30/2010, or 761 observations. The prices are recorded in the original currency adjusted

for rights, and when no trade takes place in a given week, a missing value is reported.

The source of the data is Economatica.

The parameters for the model were chosen as in the previous example. Firstly, we consider

150 equidistant knots for both trend and seasonal components. We then relied on the

inspection of the residuals in trend model (5). ACF and PACF analysis surprisingly

suggest that the inclusion of frequency ω = 2π(760/126), and the use of an AR(1) process
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to characterize the remainder are indeed appropriate. Furthermore, the application of the

R(mτ ) criterion presented in section 2 selects mτ = 4 as the optimal penalization choice

in (4).

The first two panels in Figure 6 present the decomposition of the log prices during the

analyzed period. The gray line in the upper-most panel depicts an oscillatory shape with

an apparent dip at the beginning of 2003, and two utmost points at the beginning of

years 1998 and 2008, all of which are synchronized with the dynamics of the international

price of cooper in those years. These features are approximated by the fitted trend

component (black line), and the addition of that and the seasonal part (dashed line),

up to an apparent phase change in the seasonal component around year 2004, which

coincides with the recovery in cooper prices due to a period of worldwide cooper shortage.

The bottom panel of the same figure shows that AR(1) model imputed to the remainder

is adequate. The gray lines indicate the behavior of the remainder before the AR(1)

structure is included, and the black lines show the behavior of the residuals once the time

series model is considered. The autocorrelation parameter in the latter was found to be

φ = 0.2.

An obvious argument against applying a decomposition algorithm to prices in financial

markets is the efficient market hypothesis proposed by Fama (1970), which states that if

indeed any structure existed in the market, traders would take bullish or bearish positions

accordingly, and this action would make such structure vanish. Nonetheless, there is

also empirical evidence suggesting that such hypothesis may be less reliable in developing

countries (see e.g. Delgado and Humala, 1997; Kyaw, 2003; Worthington and Higgs, 2003).

This has been argued to be the case, because the fluctuations in such markets show much

more structure than those of developed countries. Some of the reasons for this feature

are, for example, the fact that these markets deal with small transaction volumes; are

mostly driven by institutional agents; and are typically illiquid.

13



4.3 Monthly Prices of Pork Meat in the EU

For this application we consider monthly data for the price of pork meat in the European

Union between 08/1995 and 07/2012, that is 204 observations. The source of the data

is the statistical office of the European Union (EUROSTAT), and records the average

of grade E pig meat in cents per kilogram. To compute the average, the information is

initially collected at a country level by the corresponding statistical authority, and is then

reported to EUROSTAT where it is consolidated, its comparability is ensured and the

weighted average (on production level per country) is calculated.

For the number of knots we consider kτ = kα = 20 only because of the relatively small

number of observations, and the limited degrees of freedom vailable after the inclusion of

six seasonal covariates (2 covariates per frequency). The other parameters are selected, as

in the previous examples, following the steps presented in section 2. The analysis of the

residuals of (5) given m∗τ = 5 reveals that the inclusion of frequencies ω1 = 2π(204/12),

ω2 = 2π(204/6) and ω3 = 2π(204/4), is adequate with no need for the use of an ARMA

model for the remainder part. We do not find this result surprising considering that the

data records monthly averages, and that for such resolution most of the short memory in

remainder is expected to vanishe. The R(mτ ) criterion selects a penalization parameter

mτ = 2 for the trend component.

Once again, we present the decomposition of the time series under analysis in the first

two panels of Figure 7. The data signal is presented as a gray line in the upper-most

panel, and exhibits a great amount of structure. This is caused by the fact that it records

monthly averages, and hence little variability is observed. As it can be seen, the estimated

trend follows the structure of the data well, exhibiting a highly non-linear pattern which

is possibly linked to the so-called hog cycle (see e.g. Ezequiel, 1938; Hayes and Schmitz,

1987), and other supply and demand anomalies affecting the market during the study

period. As an example, it is interesting to consider the spiral of price increments at the
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end of 1995 caused by the rise in pork meat demand consequence of the so-called mad

cow disease; and the latter plumping of prices caused by the saturation of the market by

producers eager to profit from the initial extraordinary benefits, which is considered the

typical production dynamic driving the hog cycle’s contraction phase.

With respect to the seasonal component, an apparent reduction in its amplitude along the

analyzed years is reported in the middle panel of Figure 7. We do not find this observation

surprising since there are arguments to believe that nowadays pork meat production has

become less dependent on the yearly seasons mainly because of a contraction coming from

the supply side of the market. Consider, for example, the effect of the globalization of feed

markets that isolates the seasonal effect of the post harvest feeds, or the standardization

of pork breeding practices in the industry under which pigs are now held in very large,

isolated climate controlled units, making weather conditions almost negligible on the meat

production side.

5 Conclusion

We presented a trend-seasonal decomposition method of time series based on penalized

splines that considers varying seasonality and a non-trivial correlation structure for the

remainder. The former is modelled by a varying coefficient model and the latter by an

ARMA(p, q) process. The method allows for an instant estimation of all parameters

by means of the mixed model representation of penalized splines, which can be easily

implemented by using the R package nlme. All together, the main advantages of our

approach are the simultaneous modeling of all three components of a time series, the

data-driven choice of smoothing and penalization parameters, as well as fast and simple

numerical implementation. Real data examples and comparison to the STL method of

Cleveland et al. (1990) confirmed practical relevance and effectiveness of the developed

method.
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Appendix: Technical details

Given the solution of (3), one can estimate the smooth part of the decomposition as f̂ =

GY with smoothing matrix G = C(CtR−1C +D)−1CtR−1, where C = [Cτ ,Cς ], and

D = blockdiag{Dτ ,Dς} such thatCτ = [Xτ ,Zτ ],Cς = [diag{cos(ωx)}Xα, diag{cos(ωx)}Zα];

Dτ = σ2/σ2
uτdiag{0mτ ,1kτ+mτ} and Dς = σ2/σ2

uαdiag{0mα ,1kα+mα}. The estimation of

each component requires then a decomposition of G, for which we can write: Gτ =

[Cτ ,0](CtR−1C +D)−1CtR−1 and Gς = [0,Cς ](C
tR−1C +D)−1CtR−1 so that G =

Gτ +Gς . Using formulae for the inverse of a partitioned matrix, and following the results

by Aerts et al. (2002) we note that these smoothing matrices can also be written as:

Gj = Cj{Ct
jR
−1(I − S−j)Cj +Dj}−1Ct

jR
−1(I − S−j), j ∈ {τ, ς},

where the subscript−j equals τ if j is set to ς and viceversa; and S−j = C−j(C
t
−jR

−1C−j+

D−j)
−1Ct

−jR
−1 is the smoothing matrix in a model with only component j.
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Figure 1: Simulation Example. (a) time series, (b) trend component, (c) seasonal com-
ponent and (d) remainder component.
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Figure 2: (a) Impulse-Response Function; (b) Transfer Function; (c) Trend estimate. In
all plots the continuous and dashed lines represent the cases when mτ = 2 and mτ = 5
respectively. In (c) the simulated data is added as a gray line.
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Figure 3: Comparison between STL and penalized splines method. For panels (a), (b) and
(d) the dashed and the continuous lines show the results for the STL and spline methods
respectively: (a) trend component comparison, (b) seasonal component comparison, and
(d) added trend and seasonal estimation comparison. Panel (c) shows the scatter plots of
the resulting remainder components from the simulations and the real ones for the STL
(gray circles) and penalized splines methods (black circles).
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Figure 4: MSE component-wise comparison between the spline method (SPL in the figure)
and the STL procedure in the Monte Carlo experiment.
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Figure 5: Decomposition Example for Hourly Temperatures in California. (a) Raw data
(gray line) and estimators for the trend (black continuous line), and the added trend
and seasonal estimations (black dashed line); (b) estimated seasonal component; and (c)
ACF and PACF for the model with (black lines) and without (gray lines) an explicit
characterization of the remainder.
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Figure 6: Decomposition Example for Weekly Stock Prices in Peru. (a) Raw data (gray
line) and estimators for the trend (black continuous line), and the added trend and sea-
sonal estimations (black dashed line); (b) estimated seasonal component; and (c) ACF
and PACF for the model with (black lines) and without (gray lines) an explicit charac-
terization of the remainder.
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Figure 7: Decomposition Example for Monthly Pork Meat Prices in the EU. (a) Raw
data (gray line) and estimators for the trend (black continuous line), and the added trend
and seasonal estimations (black dashed line); (b) estimated seasonal component; and (c)
ACF and PACF for the model with (black lines) and without (gray lines) an explicit
characterization of the remainder.
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