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Abstract

This paper reviews various treatments of non-metric variables in Partial Least

Squares (PLS) and Principal Component Analysis (PCA) algorithms. The perfor-

mance of different treatments is compared in the extensive simulation study under

several typical data generating processes and recommendations are made. An appli-

cation of PLS and PCA algorithms with non-metric variables to the generation of

a wealth index is considered.
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1 Introduction

Principal Component Analysis (PCA, Hotelling, 1933) and Partial Least Squares (PLS,

Wold, 1966) are popular dimension reduction techniques, which are typically applied

in case of multicollinear predictors and are also often used to build various composite

indices. Both PCA and PLS are developed for the analyses of metric variables. However,

in practice one often is faced with non-metric variables. Even though there is a large

number of approaches to treat non-metric variabels in PCA and PLS algorithms available

in the literature, it is not always clear under which assumptions about the data generating

process (DGP) these algorithms perform best. To the best of our knowledge, there is no

clear guideline for practitioners how to select the best treatment of non-metric variables

for data at hand. In this work we review various treatments of non-metric variables for

PCA and PLS algorithms. All together, we consider eleven methods grouped into three

main types. All treatments for non-metric variables are described in detail, together with

necessary assumptions, if appropriate. An extensive simulation study aims to compare

the performance of all methods under several typical data generating processes and to

make recommendations for practitioners.

As an application, we consider construction of a wealth index with PCA and PLS. Wealth

indices (Filmer and Pritchett, 2001; Rutstein and Johnson, 2004) are composite indices

that aim to measure household wealth based on the posession of certain assets. In general,

a composite index is an aggregated variable comprising individual indicators and weights

that commonly represent the relative importance of each indicator (Nardo et al., 2005).

Other examples of such indices include the KOF index of Globalization (Dreher, 2006)

that quantifies globalization and the Social Institutions and Gender Index (SIGI; Branisa

et al., 2013) that measures social institutional aspects of gender inequality across countries.

The most crucial step in building an index is to determine appropriate weights, which is

typically done with PCA or PLS. Since in practice many variables that enter such indices
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are non-metric, it is of great importance to apply appropriate methods for treating non-

metric variables for PCA and PLS. Our wealth index application illustrates the generation

and use of a composite index with non-metric variables. A wealth index is often used as

a proxy for household expenditures, so that it is important to quantify how well the

wealth index is able to predict household expenditures. Therefore, we perform regression

analyses, where household expenditures are explained by the wealth index and a set

of control variables. We perform a model selection with respect to the treatment of

non-metric variables and the set of control variables to improve estimated prediction

performance.

The rest of the paper is organized as follows. Section 2 recapitulates PCA and PLS

algorithms and reviews the treatments of non-metric variables in PCA and PLS in the

literature. In Section 3 the simulation study is presented, various treatments are compared

and recommendations under several typical DGPs are made. The analysis on the wealth

index is performed in Section 4, before we conclude in Section 5.

2 PCA and PLS with Non-metric variables

2.1 PCA and PLS Algorithms

First, we give a brief discription of standard PLS and PCA algorithms with metric vari-

ables. Let us consider the following regression model y = Xβ + ε, where y ∈ RN is a

regressand vector and X ∈ RN×K , K < N is a regressor matrix. Both y and X are

assumed to be centered. Regression coefficients are denoted by β ∈ RK and ε ∈ RN is

the error term, such that E(ε|X) = 0 and Cov(ε|X) = σ2In.

PCA and PLS scores are built as linear combinations of regressors, that is T = XW ,

where T = (t1, ..., tA) ∈ RN×A is the score matrix and W = (w1, ..., wA) ∈ RK×A is the

weight matrix with A ≤ K. Thereby, the weight matrices are different in PCA and PLS.
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PCA weights wa are found from

wa = argmax
‖ω‖=1

ωTXTXω, subject to wa ⊥ ... ⊥ w1, a = 1, ..., A,

which is the a-th eigenvector of XTX. The first PLS weight vector w1 is given by

w1 = argmax
‖ω‖=1

(ωTXTy)2 =
XTy

‖XTy‖
,

while the later weights wa are found solving the same problem subject to the mutual

orthogonality wa ⊥ ... ⊥ w1. We refer to de Jong (1993) for more details.

2.2 Treatments of Non-metric Variables in PCA and PLS

Treatments of non-metric variables in PCA ans PLS algorithms available in the literature

can be organized into three main categories. The first group of methods uses certain

transformations of each unique category of a non-metric variable into a variable. The

second group of approaches applies various scalings of non-metric variables after which

these variables are treated as metric. The last group of treatments assumes a certain

continuous latent variable behind the observed non-metric variable and uses the variance-

covariance matrix of the latent variables to calculate PLS or PCA weights. In the following

a brief summary of these methods is given. Thereby, it is assumed that the first Kn

columns of regressor matrix X contain non-metric variables, the j-th non-metric variable

has mj unique values, which are integers xij ∈ {0, 1, ...,mj−1}, i = 1, . . . , N , j = 1, . . . , K

and the regressand y is always metric.

First, consider methods which transform each unique category of a non-metric variable

into a variable. These are dummy coding (Filmer and Pritchett, 2001), the aggre-

gation method (Saisana and Tarantola, 2002), regular simplex method (Niitsuma
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and Okada, 2005) and multiple correspondence analysis (MCA; Greenacre, 2010).

All those methods require no particular distributional assumptions on variables in X.

Dummy coding transforms each unique value of a non-metric variable to a dummy

variable. In other words, one replaces xij with x̃ij = (I(xij = 0), I(xij = 1), ..., I(xij =

mj − 1)) ∈ R1×mj , where I denotes the indicator function. The first element may be

dropped for an easier interpretation. The aggregation method in this paper is defined

as a cluster level average. That is, it is assumed that each observation xij belongs to a clus-

ter c ∈ {1, ..., C} and it is replaced with x̃ij = (Ac,j(0), Ac,j(1), ..., Ac,j(mj − 1)) ∈ R1×mj ,

where Ac,j(u) =
(∑

i∈c I(xij = u)
) (∑

i∈c
∑mj−1

v=0 I(xij = v)
)−1

. The regular simplex

method transforms each value of a non-metric variable to a corresponding vertex co-

ordinate of a regular simplex, that is x̃ij = Vermj−1(xij) ∈ R1×mj , where Vermj−1(xij)

transforms xij to the (xij + 1)-th vertex coordinate in mj − 1 dimension. For all three

afore-mentioned methods non-metric variables after the treatment and metric variables

are concatenated, resulting in a row X̃i = (x̃i1, x̃i2, ..., x̃iKn , xiKn+1, ..., xiK) of matrix X̃.

Finally, usual PLS or PCA is applied on X̃. The last approach in this group, MCA,

first discretizes metric variables, so that the regressor matrix contains only non-metric

variables. Afterwards, the regressor matrix is transformed to an indicator matrix using

dummy coding without dropping the first column, which will be denoted by Z. Subse-

quently, Z is standardized as Zs = diag(r−1/2)(P−rcT )diag(c−1/2), where P = Z(1TZ1)−1,

r = P1, c = P T1 and 1 denotes a vector of 1s of the appropriate length. Finally, Singu-

lar Vector Decomposition (SVD) is applied to Zs and the left singular vectors are used

as scores. This procedure can be interpreted as a PCA on discretized regressors with

a special dummy coding, where each column is weighted, so that categories with many

incidences are equally important as categories with fewer incidences.

Second group of approaches applies certain scaling to each unique value of non-metric

variables. These methods include the optimal scaling method (Tenenhaus and Young,

1985), non-metric partial least squares regression (NM-PLSR; Russolillo, 2009)
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and categorical principal component analysis (CATPCA; Meulman, 2000). No

distributional assumptions on X are necessary. The optimal scaling method maximizes

the sum of variances of non-metric variables in terms of the scaling of unique categories.

First, an indicator matrix from non-metric variables Z is built and the eigenvector ν,

corresponding to the second largest eigenvalue of K−1diag(1TZ)−1ZTZ, is determined.

Finally, PCA or PLS is applied to X̃ = (Z1ν1, ..., ZKnνKn , xKn+1, ..., xK), where Zj ∈

RN×mj and νj ∈ Rmj denote the columns of Z and the components of ν corresponding

to variable j, j = 1, . . . , Kn. Next approach, NM-PLSR, maximizes the covariance

between the first score and regressand in term of the scaling of unique categories. The

quantification function is defined as Q(xj, y) = Zj(Z
T
j Zj)

−1ZT
j y/

∥∥Zj(ZT
j Zj)

−1ZT
j y
∥∥, if

xj is treated as nominal. The quantification function for ordinal xj is analogous, except

that it is constrainted to respect the order. If the quantification of a category does not

respect the order, another quantification is calculated after the category is merged to

an adjacent category. Now PLS is run with X̃ = (x̃1, ..., x̃Kn , xKn+1, ..., xK), where x̃j =

Q(xj, y), j = 1, ..., Kn. The quantification does not change for the later scores. The last

method in this group, CATPCA, maximizes the sum of the variances of scores in terms

of the scaling of unique categories. CATPCA allows to select the number of scores to

be considered in the maximization, but in analogy to NM-PLSR, we opted for the case

with only one score considered during the quantification. In our simulation studies and

application CATPCA showed rather inferior performance. Therefore, we omit the details

of this lengthy algorithm and refer to IBM SPSS Statistics (2013) for more details.

Polychoric PCA (Kolenikov and Angeles, 2009) is based on the assumption that ob-

served ordinal variables are generated from a latent multivariate normal process dis-

cretized at some thresholds. Under this assumption, thresholds and variance-covariance

matrix are estimated and PCA is performed on centered and autoscaled regressors us-

ing the eigenvectors from the variance-covariance matrix as the weights. In the fol-

lowing Φ and Φ2 denote standard normal and bivariate standard normal cumulative
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distribution function, respectively, and φ is standard normal density function. First,

one estimates the thresholds at which the latent normal variable is discretized. Let

αj = (αj(−1), αj0, ..., αjmj−1) ∈ Rmj+1 be a vector of thresholds for variable xj, where

αju = Φ−1
(
N−1(−0.5 +

∑N
i=1 I(xij ≤ u))

)
for u = 0, ...,mj − 2 and αj(−1) = −∞,

αjmj−1 = ∞. Second, the correlation between variables is estimated by maximizing

likelihood conditional on the thresholds, i.e., ρ = cor(Xj,Xj′ ) and ρ̂ = argmax
ρ

`(ρ),

where `(ρ) =
∑N

i=1 ln(L(xij, xij′ |ρ, α, α
′
))). If one estimates the correlation between

two ordinal variables, i.e., polychoric correlation, the likelihood for observation i is

L(xij, xij′ |ρ, α, α
′
) = Φ2(αjxij , αj′x

ij
′ |ρ) − Φ2(αjxij−1, αj′x

ij
′ |ρ) − Φ2(αjxij , αj′x

ij
′−1|ρ) +

Φ2(αjxij−1, αj′x
ij
′−1|ρ). The correlation between a metric variable and an ordinal variable

is called polyserial correlation. The likelihood for an observation with ordinal variable xij

and metric variable xij′ is L(xij, xij′ |ρ, α) = (Φ(αjxij − ρxij′ )−Φ(αjxij−1 − ρxij′ ))φ(xij′ ).

We adapt polychoric PCA in the the PLS context, which we call polyserial PLS. This

method applies autoscaling to regressors and outcome variable and finds the first PLS

weights, w1 = Cor(y,X)/ ‖Cor(y,X)‖, where Cor(y,X) is polyserial or Pearson corre-

lation depending on whether regressor is ordinal or numerical. Kolenikov and Angeles

(2009) discuss also the normal mean coding, which is a scaling approach based on the

same distributional assumption as polychoric PCA. It scales each unique category of an

ordinal variable to the expected value of the latent normal variable of the group, to which

the category belongs. The scaling of xij is computed as E(x∗ij|xij) =
∫ αjxij

αjxij−1
zφ(z)dz =

φ(αjxij−1)− φ(αjxij), where x∗ij denotes the underlying latent variable.

Additionally to the described three groups of methods, we study ordinal PCA and

ordinal PLS, where ordinal variables are simply treated as if they were metric, see

Kolenikov and Angeles (2009).
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3 Simulations

In this section we describe the results of the simulation study that compares various treat-

ments of non-metric variables for PCA and PLS algorithms under several data generating

processes.

3.1 Simulation Design

We adapt the simulation designs from Naes and Martens (1985) and Kolenikov and Ange-

les (2009) with some adjustments. All simulation designs relay on a latent variable model

(Muthén, 1984; Chin et al., 2003). A latent variable model explictly assumes latent vari-

ables, which are not directly observable, but manifested to other observable variables.

For example, in a wealth index application, one cannot observe household wealth directly,

but wealth is assumed to be manifested to household asset posessions, such as car, radio

and bicycle, which are observable. A latent variable model reconstructs the latent con-

cept based on the observed variables, which are manifested from the latent variable. To

highlight the difference in PCA and PLS algorithms we design two main DGPs as follows.

Under the first data generating process (DGP 1), covariates of the model contain only

one latent factor, which is related to the response. In this setting both PCA and PLS

algorithms are expected to perform similarly and the main focus is on various methods

for non-metric variables. Under the second data generating process (DGP 2), covariates

of the model contain two latent factors: the first one is related to the regressand and the

second one is not. Thereby, the variance of the second latent factor, which is unrelated

to the response variable, is much larger than that of the first latent factor. Hence, PLS

algorithm, which maximizes the covariance between the response and covariates, remains

unaffected by the unrelated latent factor with large variance and should perform much

better than PCA, which maximizes the covariance of covariates and, hence, is highly in-
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fluenced by the “spurious” covariates related to the second latent factor. In this setting

we aim not only to demonstrate the performance of methods for non-metric variables,

but also to compare PCA and PLS methods. DGP 1 has a practical relevance, when the

largest variations in the observed variables come from the latent variable of interest, e.g.,

in a wealth index application, the posession of a car, house and so on could be largely

determined by household wealth. DGP 2 is relevant to the case, where the observed vari-

ables include only small variations from the latent variable of interest, while the observed

variables are influenced by other factors too. For example, one may try to measure glob-

alization by the number of IKEA shops in a country. But the number of IKEA shops is

not only determined by globalization, but also by local demand, competitors, regulations,

etceteras, which may account for the main variations in the observed variable. Finally,

DGP 1H and DGP 2H introduce heterogeneity of observations to DGP 1 and DGP 2.

These settings reflect practical situations with different clusters in the data. For exam-

ple, African countries show different behaviors than other countries in terms of economic

growth (Barro, 1989; Sachs and Warner, 1997). When one studies a survey data such

as Demographic and Health Surveys (Central Bureau of Statistics (CBS) Kenya et al.,

2004), certain covariates may have different contributions for observations measured in

urban and rural areas or male and females.

Formal definitions of all data generating process are as follows. DGP 1 corresponds to

the following model. Let

x∗ij = Ξi1λ1j + ∆ij, i = 1, . . . , N, j = 1, . . . , K.

Here λ1j = 1/
√
K, j = 1, . . . , K are loadings and Ξi1 is the common latent factor, which is

distributed either as Ξi1 ∼ N (0, 1) or Ξi1 ∼ lnN (−1.44, 1.55). The parameters of the log

normal distribution imply variance 1 and skewness 13. Error terms ∆i = (∆i1, ...,∆iK)

are the unique factors with ∆i ∼ NK (0K , IK/(9K)), such that the signal to noise ratio
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√∑K
j=1 Var(Ξi1λ1j)/

∑K
j=1 Var(∆ij) = 3. Row vector X∗i = (x∗i1, ..., x

∗
iK) denotes the i-th

observation in the regressor matrix and the superscript ∗ states that these are metric

variables before discretization. The latent factor is connected to the outcome variable yi

as

yi = Ξi1β1 + εi, i = 1, . . . , N, (1)

where β1 = 1 and the error term εi ∼ N (0, 0.01). Hence, the only latent factor is

connected to the outcome variable and in this setting one can expect both PCA and PLS

to perform equally well.

DGP 2 introduces an additional factor with large variance which does not influence the

response variable:

x∗ij = Ξi1λ1j + Ξi2λ2j + ∆ij,

where (Ξi1,Ξi2) ∼ N2

(
02,
(
1 0
0 5

))
or (Ξi1,Ξi2) ∼ lnN2

(
(−1.44,−0.63),

(
1.55 0
0 1.55

))
, so that

the parameters of the log normal distribution imply variances 1 and 5 for Ξi1 and Ξi2,

respectively, and skewness 13 for both. The loadings λ1j are as before, while λ2j are

chosen so that ‖λ1‖ = ‖λ2‖ = 1 and λ1 ⊥ λ2. The distribution of ∆i = (∆i1, ...,∆iK) is

the same as in DGP 1, but the signal to noise ratio increases to 3
√

6. The model for the

outcome variable remains unchanged, i.e., (1) still holds, so that Ξi2 does not have any

influence on yi. In this setting PLS is expected to outperform PCA, since by defintion it

remains unaffected by the second latent factor with large variance, in contrast to PCA.

DGP 1H and DGP 2H introduce a Boolean variable which interacts with the first latent

factor of DGP 1 and 2, respectively, that is

yi = Ξi1β1 +Diβ2 + Ξi1 ◦Diβ3 + εi,

with Di ∼ Bin(1, 0.5), β2 = β3 = 1 and ◦ denoting the Hadamard product. This is a
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simple example of heterogenous observations. In applications such heterogeneity appears,

if the regression coefficients differ among different clusters. Neglecting such heterogenous

observations should lead to a deterioration of the performance, which we would like to

quantify in our simulation study and determine which methods stay robust.

In the next step, we discretize some variables in X∗. The discretization of the j-th variable

x∗ij with mj number of unique categories is performed by the following function.

xij =



mj − 1, if τj,mj−1 < x∗ij

mj − 2, if τj,mj−2 < x∗ij ≤ τj,mj−1

...
...

1, if τj,1 < x∗ij ≤ τj,2

0, if x∗ij ≤ τj,1,

where τj = (τj,1, ..., τj,mj−1) are some thresholds for x∗ij. The thresholds are generated as

τj = (τj,1, ..., τj,mj−1) = (F−1(uj,1), ..., F
−1(uj,mj−1)), where F (·) is the empirical CDF of

the realizations of x∗ij and uj,1, ..., uj,mj−1 are generated from the uniform distribution on

[0,1] and sorted ascending.

To measure the performance of various non-metric PCA and PLS methods, the mean

squares error of prediction (MSEP) is calculated from a Monte Carlo sample of 500 rep-

etitions. The MSEP in the l-th iteration is defined as

MSEPl =
1

N
(Ξ1lβ1 − Ulγ̂l)T (Ξ1lβ1 − Ulγ̂l)

for DGP 1 and 2 and for DGP 1H and 2H as

MSEPl =
1

N
(Ξ1lβ1 +Dlβ2 + Ξ1l ◦Dlβ3 − Ulγ̂l)T (Ξ1lβ1 +Dlβ2 + Ξ1l ◦Dlβ3 − Ulγ̂l),
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where Ξ1l = (Ξ11l, ...,ΞN1l) and Dl = (D1l, ..., DNl). The matrix Ul = (1, t1l) ∈ RN×2

includes the intercept with the first PLS or PCA score and γ̂l is the OLS coefficients of

yl = (y1l, ..., yNl) on Ul. True values Ξ1lβ1 and Ξ1lβ1 +Dlβ2 + Ξ1l ◦Dlβ3 are scaled as unit

variance before fitting the models to make the MSEPs from different settings comparable.

We consider the following settings under each DGP. The sample size N is either 100 or

1000 and the number of regressors K is either 10 or 50. The proportion of non-metric

variables in the regressor matrix is 50% or 80%. The expected number of categories

of non-metric variables mj is either 3 or 7. Thereby mj is generated from the Poisson

distribution with mean λ = 1 or λ = 5 and we add 2 to mj to guarantee at least two

unique values in a variable.

PLS and PCA solutions are known to depend on the scaling of regressors (Wold et al.,

2001; Keun et al., 2003). Scaling approaches, as well as polychoric PCA and polyserial

PLS, by definition imply particular scalings of regressors. For dummy coding method we

compare three scaling approaches: no scaling, autoscaling and block scaling. Auto-scaling

centers and standardizes regressors to the unit variance, while block scaling sets the sum

of the variances of dummy variables from one non-metric variable to one.

Note that our model is restricted to just one latent component and only the first PCA

and PLS scores are estimated, implicitly assuming that the number of latent components

is known. This allows us to exclude the variability due to the estimation of the number of

latent components, so that the comparison beween the methods is not influenced by an

extra variability. Moreover, in many applications only the first PCA or PLS components

is of interest and is estimated.

3.2 Simulation Results

The simulation results are reported via box plots, where means are marked with black

dots. We define Base setting 1 as DGP 1, normally distributed Ξ1, N = 1000, K = 50,
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proportion of non-metric variables is 80% and expected number of categories is 7. Base

setting 2 is the same as Base setting 1, except that DGP 2 is used instead of DGP 1.

The reported methods in the box plots are PCA or PLS with dummy coding (dummy

PCR/PLSR), the aggregation method (aggregation PCR/PLSR), the regular simplex

method (RS-PCR/PLSR), the optimal scaling method (OS-PCR/PLSR), the ordinal

PCR/PLSR, the normal mean coding (normal mean PCR/PLSR), MCA (MCR), NM-

PLSR, CATPCR, polychoric PCR and polyserial PLSR. For dummy coding only the

results with no scaling are reported, because other scaling approaches perform similar or

worse for the selected settings. For similar reasons, both NM-PLSR and CATPCR with

only nominal quantification are reported.

Figure 1: MSEP under DGP 1 (left) and DGP 2 (right)

Base setting 1 and 2 are reported. PCA-based methods are colored white and PLS-based methods light
grey.

Figure 1 focuses on the comparision of PCA and PLS under two data generating processes.

Note that the MSEP-scale of the left and right panel are different. Under DGP 1 both PCA

and PLS perform similar, as expected. PLS methods show either little or no advantages

compared to PCA. In contrast, under DGP 2 we observe that PLS methods show a

clear and significant advantage compared to PCA. Also, under DGP 2 all approaches

13



Figure 2: MSEP under DGP 1

Base setting 1 is used. Red arrows mark changes of the means from the base setting to the respective
setting. PCA-based methods are colored white and PLS-based methods light grey.
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Figure 3: MSEP under DGP 2

Base setting 2 is used. Red arrows marks changes of the means from the base setting to the respective
setting. PCA-based methods are colored white and PLS-based methods light grey.

15



Figure 4: The absolute frequency of the best perfoming methods over different DGP
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for treating non-metric variables perform similar for PCA and PLS, while under DGP 1

several methods show better performance than the others, which we study in much more

detail in Figure 2.

Figure 2 shows the performance of various methods under DGP 1. Note that scales on the

left middle and right bottom plots are different from the other plots. We focus on Base

setting 1, shown again in the left top plot and vary one setting at each next plot. The

changes of the means from the base setting are marked by red arrows. MCR, RS-PCR,

RS-PLSR, ordinal PCR, ordinal PLSR, CATPCA, Polychoric PCR and Polyserial PLSR

are not reported, since they performed much worse compared to other methods when the

latent variable is skewed and didn’t perform good either in other settings as visible in

Figure 1. The performance of all remaining methods deteriorates when the true latent

variable becomes skewed (right plot in the top row), when the number of the variables

decreases (left plot in the middle) and when heterogenous observations are introduced

(right plot in the bottom). When the proportion of non-metric variables decreases (right

plot in the middle), all methods improve, while the improvement is the most salient

for dummy PCR/PLSR. Changes in the expected number of categories (left plot in the

bottom) have little impact, except for dummy PCR/PLSR, which noticeably improve

with less expected number of categories.

The upper left panel of Figure 4 shows the absolute frequency of best performing (in

terms of the average MSEP over Monte Carlo runs) methods out of all 64 settings under

DGP 1 and DGP 1H. Even though some methods are not reported in Figure 2 to make

the comparison easier, all methods are considered in Figure 4. It is found that NM-PLSR

with nominal or ordinal quantification is most often best method followed by normal mean

PLSR and dummy PLSR with autoscaling. The lower left panel shows the frequency

of best performing PCA-based methods, with normal mean PCR always outperforming

other methods. Compared to other methods, dummy coding approach is very attractive in
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applications due to its simple implementation and interpretation. Therefore, we perform

Welch’s t-tests to 5% significance level with Bonferroni adjustment (Yandell, 1997, p. 93)

to test if NM-PLSR with nominal quantification outperforms dummy PLSR significantly.

It turns out, NM-PLSR with nominal quantification is significantly better than dummy

PLSR with autoscaling in 59 out of 64 settings. The few settings, where no differences

were found, typically have heterogeneity among observations, skewed latent variable and

small number of observations. Similarly, normal mean PCR and dummy PCR are tested.

It is found that the normal mean PCR significantly outperforms dummy PCR in 62

settings. No differences were found for settings with heterogeneity among observations,

skewed latent variable, small sample, many variables and small proportion of non-metric

variable.

Figure 3 shows the performance of various methods under DGP 2. When the latent

variable is skewed (right top plot), the Monte Carlo variations become large and some

methods show deteriorations. With the number of variables decreasing (left plot in the

middle row), generally PLS-based methods deteriorate and PCA-based methods improve.

But for ordinal PCR/PLSR and polychoric PCR and polyserial PLSR the pattern is op-

posite. The improvement of ordinal PLSR is so large, that it becomes the best method in

this setting. The proportion of non-metric variables (right middle plot) and the expected

number of categories (left bottom) do not cause much changes. All methods deteriorate

slightly with the heterogeneity among observations (right bottom plot).

The upper right panel of Figure 4 shows the absolute frequency of best performing meth-

ods under DGP 2 and DGP 2H. Dummy PLSR with autoscaling and block scaling perform

best most frequently followed by ordinal PLSR. The lower right panel shows that normal

mean PCR performs most frequently the best among PCA-based methods followed by or-

dinal PCR and dummy PCR with autoscaling. We performed again Welch’s t-tests with

Bonferroni corrections as above to test significant differences between methods under all
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64 settings. First, ordinal PLSR significantly outperforms dummy PLSR in 16 out of

64 settings. These settings with significant differences typically have high proportion of

non-metric variables with few variables. Second, normal mean PCR significantly outper-

forms dummy PCR with autoscaling in 33 settings. These settings typically have normal

distributed latent variable, small number of variables and high proportion of non-metric

variables. Third, ordinal PCR significantly outperforms dummy PCR in 20 settings, which

typically have normal distributed latent variable.

4 Applications

To demonstrate the performance of PCA and PLS algorithms with non-metric variables

on real data, we construct a wealth index, based on the Indonesian Family Life Survey

(Strauss et al., 2004) from the year 2000. A wealth index measures household wealth

based on the posession of assets and is often used as a proxy for household expenditure.

Therefore, we consider the logarithm of the real monthly household expenditure per capita

as an outcome variable and aim to find such weights in the wealth index, which provide

the best prediction of household expenditure. There are 11 categorical asset variables to

build a wealth index. The relationship between wealth and expenditure can differ across

observations due to different depreciation rates. Therefore, we consider province, region

(kabupaten), destrict (kecamatan) and urban/rural variables to control for heterogeneity.

There are 10222 complete observations of households. We use the following empirical

model:

yi = Tiγ1 +Diγ2 + Ti ⊗Diγ3 + εi,

where Ti=(t1i, ..., tAi) contains PCA or PLS scores, Di is the i-th row of the indicator

matrix built from the control variables, Ti ⊗ Di builds the interaction terms between Ti

and Di and γ1, γ2 and γ3 are coefficient vectors of appropriate length.
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First, a model selection for the treatment of non-metric variables, the number of scores

and control variables is performed. For all treatments of non-metric variables mentioned

in Section 2.2, estimated MSEP via 10-fold cross-validation (Mevik and Cederkvist, 2004)

is calculated for all possible combinations of the number of scores and control variables.

NM-PLSR with 2 scores and province, region and urban/rural variables to control hetero-

geneity showed the lowest estimated MSEP, closely followed by the PLSR with dummy

coding, which we choose due to easier interpretation.

Since dummy coding with autoscaling is used, estimators for Tγ1 are given by T γ̂1 =

XS−
1
2W ∗γ̂1 = Xβ̂1, where S is a diagonal matrix containing the variance of each column

of X and W ∗ is the PCA or PLS weights in terms of autoscaled regressors. In the following

we report γ̂1, β̂1 and the weights W = S−
1
2W ∗.

Table 1: Coefficient estimates in terms of composite indices and model selection criteria

γ̂1,PCR γ̂1,PCR γ̂1,PCR γ̂1,PCR
A = 1 A = 1, H A = 2 A = 2, H

t1 0.183∗∗∗ 0.187∗∗∗ 0.183∗∗∗ 0.179∗∗∗

t2 −0.055 −0.060
Adj.R2 0.211 0.233 0.222 0.245

M̂SEP 0.446 0.436 0.439 0.429

γ̂1,PLSR γ̂1,PLSR γ̂1,PLSR γ̂1,PLSR
A = 1 A = 1, H A = 2 A = 2, H

t1 0.211∗∗∗ 0.221∗∗∗ 0.211∗∗∗ 0.210∗∗∗

t2 0.103∗∗∗ 0.105∗∗∗

Adj.R2 0.260 0.281 0.286 0.306

M̂SEP 0.419 0.409 0.404 0.395

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. The number of scores A = 1 or 2. H
means that province, region and urban/rural heterogeneity are controlled, which are not reported.

M̂SEP is estimated via 10-fold cross-validation.

Table 1 shows the coefficient estimates γ̂1 for PCA or PLS and model selection statis-

tics. Apparently, the PCR-based model has quite low adjusted R2 and the model hardly

improves by adding an additional score. In all models the estimated coefficients by t1

are significant, but the coefficients by t2 are not significant. In contrast, the PLSR-based
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model improves significantly, if one more score is added. Thereby, all coefficients are

highly significant. Taking heterogeneity into account brings similar gains to the PCR and

PLSR. The PLSR with two scores and heterogeneity control shows that with increasing

wealth, measured by the first and second score, expenditure is predicted to increase. The

PCR shows analogous results, except that the second score is not significant.

Table 2 shows the coefficient estimates in terms of the variables building the scores and

weights. The coefficient estimates of the PCR and PLSR under our favored setting,

i.e., with heterogeneity control and two scores, show strong differences, while the PLSR

coefficients are better in terms of prediction as shown in Table 1. The PCR and PLSR

coefficients of owning farm land and cooking with kerosene have opposite signs. The PLSR

emphasizes refrigerators, owning house and buildings, using mineral water as drinking

water, using public toilet and all variables related to cooking, while electricity, piped,

surface, rain, basin water, toilet without septank and communal toilet are less important

compared to the PCR. Analogously, PLS and PCA weights show strong differences, which

show the weights better suited for the prediction of household expenditure. The first PLS

weights emphasize owning non-farm land, using mineral water as drinking water, public

toilet, cooking with electricity and don’t cook, while owning farm land, using communal

toilet and cooking with kerosine are less important compared to the first PCA weight.

The second PLS and PCA weights show more drastic differences, where more than half

of the variables having weights of opposite signs. Introducing the second score brings

larger changes in coefficient estimates in the PLSR compared to the PCR, which is not

surprizing given that the PCR coefficient estimate in terms of the second score in Table 1

is not significant. We see large differences between the PLSR with one and two scores in

electricity, owning farm land, using surface, basin and mineral water as drinking water,

toilet without septank, public toilet, cooking with electricity and kerosene and don’t cook.

The PCR with one and two score shows moderate differences in owning house and non-

farm land, communal and public toilet, cooking with kerosene and don’t cook.

21



T
ab

le
2:

P
C

R
an

d
P

L
S
R

co
effi

ci
en

ts
in

te
rm

s
of

th
e

va
ri

ab
le

s
b
u
il
d
in

g
th

e
co

m
p

os
it

e
in

d
ic

es
an

d
w

ei
gh

ts

β̂
P
C
R

β̂
P
L
S
R

β̂
P
C
R

β̂
P
L
S
R

w
1
,P
C
A

w
1
,P
L
S

w
2
,P
C
A

w
2
,P
L
S

A
=

1,
H

A
=

1,
H

A
=

2,
H

A
=

2,
H

el
ec

tr
ic

it
y

0.
17

1∗
∗∗

0.
13

9∗
∗∗

0.
15

0∗
∗∗

0.
04

4∗
∗∗

0.
91

5
0.

62
9

0.
22

7
−

0.
83

5
te

le
v
is

io
n

0.
11

4∗
∗∗

0.
12

6∗
∗∗

0.
13

5∗
∗∗

0.
10

8∗
∗∗

0.
61

2
0.

56
8
−

0.
42

8
−

0.
11

1
re

fr
ig

er
at

or
s

0.
15

2∗
∗∗

0.
23

9∗
∗∗

0.
19

5∗
∗∗

0.
31

2∗
∗∗

0.
81

2
1.

08
1
−

0.
82

4
0.

80
9

ve
h
ic

le
0.

06
0∗
∗∗

0.
05

7∗
∗∗

0.
08

3∗
∗∗

0.
02

8∗
∗∗

0.
32

3
0.

25
6
−

0.
41

9
−

0.
24

3
ow

n
:

h
ou

se
−

0.
06

7∗
∗∗
−

0.
09

4∗
∗∗
−

0.
01

6∗
∗
−

0.
12

5∗
∗∗
−

0.
35

7
−

0.
42

5
−

0.
79

7
−

0.
33

7
ow

n
:

b
u
il
d
in

gs
0.

08
0∗
∗∗

0.
12

2∗
∗∗

0.
09

6∗
∗∗

0.
14

6∗
∗∗

0.
42

6
0.

55
1
−

0.
32

9
0.

28
6

ow
n
:

n
on

-f
ar

m
la

n
d

0.
00

4
0.

03
0∗
∗∗

0.
04

1∗
∗∗

0.
05

8∗
∗∗

0.
02

3
0.

13
7
−

0.
60

6
0.

27
8

ow
n
:

fa
rm

la
n
d

−
0.

08
9∗
∗∗
−

0.
04

7∗
∗∗
−

0.
04

7∗
∗∗

0.
04

1∗
∗∗
−

0.
47

9
−

0.
21

5
−

0.
64

0
0.

81
5

w
at

er
:

p
ip

ed
0.

10
7∗
∗∗

0.
09

5∗
∗∗

0.
10

5∗
∗∗

0.
03

4∗
∗∗

0.
57

1
0.

43
1
−

0.
04

1
−

0.
53

2
w

at
er

:
w

el
l

−
0.

04
8∗
∗∗
−

0.
07

0∗
∗∗
−

0.
05

3∗
∗∗
−

0.
07

0∗
∗∗
−

0.
25

7
−

0.
31

4
0.

12
4
−

0.
03

5
w

at
er

:
su

rf
ac

e
−

0.
13

2∗
∗∗
−

0.
10

1∗
∗∗
−

0.
10

8∗
∗∗
−

0.
02

3
−

0.
70

8
−

0.
45

5
−

0.
31

1
0.

69
1

w
at

er
:

ra
in

−
0.

04
6∗
∗∗
−

0.
03

1
−

0.
04

0∗
∗

0.
00

2
−

0.
24

8
−

0.
13

9
−

0.
06

7
0.

29
6

w
at

er
:

b
as

in
−

0.
09

2∗
∗∗
−

0.
07

1∗
∗∗
−

0.
08

9∗
∗∗
−

0.
01

4
−

0.
49

3
−

0.
32

1
0.

01
9

0.
50

5
w

at
er

:
m

in
er

al
0.

10
2∗
∗∗

0.
26

1∗
∗∗

0.
09

2∗
∗∗

0.
42

8∗
∗∗

0.
54

7
1.

17
7

0.
09

5
1.

71
6

to
il
et

:
se

p
ta

n
k

0.
13

9∗
∗∗

0.
15

8∗
∗∗

0.
15

0∗
∗∗

0.
13

6∗
∗∗

0.
74

3
0.

71
3
−

0.
28

9
−

0.
13

0
to

il
et

:
n
o

se
p
ta

n
k

−
0.

07
0∗
∗∗
−

0.
05

7∗
∗∗
−

0.
05

6∗
∗∗
−

0.
01

4
−

0.
37

4
−

0.
25

7
−

0.
18

6
0.

37
9

to
il
et

:
co

m
m

u
n
al

−
0.

01
9∗
∗∗
−

0.
00

4
−

0.
07

4∗
∗∗

0.
02

8
−

0.
10

3
−

0.
01

9
0.

92
8

0.
30

2
to

il
et

:
p
u
b
li
c

−
0.

00
9∗

−
0.

05
7∗
∗∗
−

0.
05

0∗
∗∗
−

0.
11

9∗
∗∗
−

0.
05

0
−

0.
25

7
0.

67
5
−

0.
61

9
to

il
et

:
fi
el

d
−

0.
12

7∗
∗∗
−

0.
15

7∗
∗∗
−

0.
12

6∗
∗∗
−

0.
15

7∗
∗∗
−

0.
67

7
−

0.
70

8
0.

07
7
−

0.
08

2
co

ok
in

g:
el

ec
tr

ic
it

y
0.

03
5∗
∗

0.
21

0∗
∗∗

0.
03

9∗
∗

0.
45

8∗
∗∗

0.
19

0
0.

94
8
−

0.
07

6
2.

46
0

co
ok

in
g:

ga
s

0.
13

7∗
∗∗

0.
23

9∗
∗∗

0.
20

1∗
∗∗

0.
31

7∗
∗∗

0.
73

2
1.

07
9
−

1.
16

1
0.

86
3

co
ok

in
g:

ke
ro

se
n
e

0.
07

7∗
∗∗

0.
02

0∗
∗∗

0.
02

1∗
−

0.
05

1∗
∗∗

0.
41

3
0.

09
2

0.
88

0
−

0.
67

1
co

ok
in

g:
w

o
o
d
,

co
al

−
0.

15
6∗
∗∗
−

0.
17

1∗
∗∗
−

0.
11

7∗
∗∗
−

0.
17

1∗
∗∗
−

0.
83

8
−

0.
77

2
−

0.
54

8
−

0.
08

2
co

ok
in

g:
d
on

’t
co

ok
0.

04
2∗
∗∗

0.
25

9∗
∗∗
−

0.
03

1∗
∗∗

0.
57

5∗
∗∗

0.
22

3
1.

17
2

1.
17

1
3.

12
6

N
ot
e:

**
*
p
<
0.
01
,
**

p
<
0.
05
,
*
p
<
0.
1.

J
ac
k
k
n
if
e
st
a
n
d
a
rd

er
ro
rs
.
T
h
e
n
u
m
b
er

o
f
sc
o
re
s
A

=
1
o
r
2
.
H

m
ea
n
s
th
a
t
p
ro
v
in
ce
,
re
g
io
n
a
n
d
u
rb
a
n
/
ru
ra
l

h
et
er
og
en
ei
ty

ar
e
co
n
tr
ol
le
d
,
b
u
t
n
ot

re
p
or
te
d
.
A
s
b
a
se

ca
te
g
o
ri
es

“
w
a
te
r:

o
th
er
”
,
“
to
il
et
:
o
th
er
”
a
n
d
“
co
o
k
in
g
:
o
th
er
”
a
re

ex
cl
u
d
ed
.

22



5 Conclusions

We have reviewed various treatments of non-metric variables in PCA and PLS algorithms.

The results of the simulation study suggest the following. First, PLS-based methods are

to prefer in practice, since, independent of true data generating process, PLS performs

either as good as PCA or significantly outperforms it. Second, under considered data

generating processes, NM-PLSR performs best under DGP 1&1H, while dummy PLSR is

to prefer under DGP 2&2H. Ordinal PLSR shows good performance in a few occasions

under DGP 2&2H. Third, normal mean PCR showed most often the best performance,

followed by ordinal and dummy PCR. Finally, ignoring heterogeneity among observations

leads to a deterioration for all methods and settings.

As an application wealth indices to predict household expenditure have been considered.

The number of scores and variables to control heterogeinity are selected simultaneously,

which bring gains in prediction performance and large changes to coefficients. The weights

and coefficients of PLSR and PCR differ drastically, while the weights and coefficients of

PLSR turn out to be better for the prediction.
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