Courant Research Centre

‘Poverty, Equity and Growth in Developing and Transition Countries: Statistical Methods and Empirical Analysis’

Georg-August-Universität Göttingen
(founded in 1737)

Discussion Papers

No. 241

The Roots of Female Emancipation: From Perennial Cool Water via Pre-industrial Late Marriages to Post-industrial Gender Equality

Manuel Santos Silva, Amy C. Alexander, Stephan Klasen, Christian Welzel

October 2017
The Roots of Female Emancipation: From Perennial Cool Water via Pre-industrial Late Marriages to Post-industrial Gender Equality*

Manuel Santos Silva¹, Amy C. Alexander², Stephan Klasen¹, and Christian Welzel³,⁴

¹University of Goettingen, Germany
²University of Gothenburg, Sweden
³Leuphana University, Lueneburg, Germany
⁴National Research University – Higher School of Economics, Moscow, Russia

This version: November 2017

Abstract

Reviewing the burgeoning literature on the deep historic roots of gender inequality, we theorize and provide evidence for an overlooked trajectory that (1) originates in a climatic configuration called the “Cool Water” (CW-) condition, from where the trajectory leads to (2) late female marriages in pre-industrial times, which eventually pave the way towards (3) various gender-equalitarian outcomes today. The CW-condition is a specific climatic configuration that combines periodically frosty winters with mildly warm summers under the ubiquitous accessibility of fresh water. The CW-condition is most prevalent in Northwestern Europe and its former colonial offshoots and embodies opportunity endowments that significantly reduce fertility pressures on women, which favored late female marriages already in the pre-industrial era. The resulting family and household patterns placed women into a better position to struggle for more gender equality during the subsequent transitions toward the industrial and post-industrial stages of development. Hence, enduring territorial differences in the CW-condition predict differences in pre-industrial female marriage ages, which in turn explain differences in gender equality today. The role of CW retains significance along this causal chain after controlling for other ‘deep drivers’ of gender inequality that have been discussed in the literature. We summarize these findings in a “seed theory of female emancipation” and conclude with a discussion of its broader implications.

Keywords Cool water Economic development Gender equality Historic drivers Seed theory

JEL Classification J12 J16 N30 O15

*We would like to thank Oded Galor, Lisa Höckel, Susan Steiner, Mikołaj Szołtysek, participants at the Gender Governance Link conference in Goettingen, the Quality of Government Institute’s Internal Conference in Budapest, and seminars at the Universities of Goettingen and Freiburg for valuable comments, and Florian Klassen and Alexander Stöcker for research assistance. We gratefully acknowledge financial support from Lower Saxony’s Ministry for Science and Culture for the project The Gender-Governance Link: Gender Equality and Public Goods Provision under the initiative “Geschlecht–Macht–Wissen: Genderforschung in Niedersachsen”. Alexander was also supported through the European Union Seventh Framework Research Project PERDEM (Performance of Democracy, grant agreement 339571). The views expressed here are ours and do not represent those of the funders. M. Santos Silva: santos.silva@wiwi.uni-goettingen.de; A. Alexander: amy.catherine.alexander@gmail.com; S. Klasen: sklasen@gwdg.de; C. Welzel: cwelzel@gmail.com.
1 Introduction

There is a growing consensus in the literature that gender equality in its various manifestations goes together with a host of beneficial outcomes, from economic productivity to distributional justice, physical security, generalized trust, honest government, effective democracy and other quality of life aspects (e.g., Seguino, 2000; Klasen and Lamanna, 2009; World Bank, 2001, 2011; Duflo, 2012; Branisa et al., 2013; Fish, 2002; Inglehart and Norris, 2003; Coleman, 2004; Alexander and Welzel, 2015). Another strand of literature highlights the importance of female agency during the pre-industrial Malthusian era for the timing and pace of the fertility transition and consequent projection into the modern era of sustained economic growth (see Galor and Weil, 1996, 2000; Lagerlöf, 2003; Galor, 2005, 2011). These beneficial effects of gender equality have sparked a growing interest in the deep historic roots of women’s emancipation from male domination (e.g., Alesina et al., 2013; Doepke and Tertilt, 2009; Hansen et al., 2015; Jayachandran, 2015).

The most prominent studies consider the issue from an inverse perspective, looking at the historic roots of greater inequality between the sexes. In the footprints of Esther Boserup, scholars locate the roots of gender inequality in the societies’ agrarian history. While one group of researchers sees the transition to agriculture in and by itself as the origin of greater inequality (Hansen et al., 2015), others are more specific and identify the plow-using type of agriculture as the source (Alesina et al., 2013; Giuliano, 2015). Still others argue that scarcity of arable land strengthens agriculture’s contribution to gender inequality (Hazarika et al., 2015).

Building on this scholarship, we theorize and provide evidence for an overlooked trajectory that (1) originates in a climatic configuration called the “Cool Water” (CW-) condition, from where the path leads to (2) late female marriages in pre-industrial times, which eventually pave the way towards (3) various gender egalitarian outcomes today.

The CW-condition is a specific climatic configuration that combines periodically frosty winters with mildly warm summers under the ubiquitous accessibility of fresh water. The CW-condition is most prevalent in Northwestern Europe and its former colonial offshoots
This condition embodies opportunity endowments that significantly reduce fertility pressures on women, which favor late female marriages already in the pre-industrial era. The resulting family and household patterns place women into a better position to struggle for more gender equality during the subsequent transitions toward the industrial and post-industrial stages of development. Hence, enduring territorial differences in the CW-condition (henceforth CW) predict differences in pre-industrial female marriage ages, which in turn predict differences in gender equality today.

In support of this causal chain, we use the CW index: a combination of absolute latitudes, continuous rain and mild summers (Welzel, 2013, 2014). We present cross-country evidence showing that CW has a sizable and consistent impact on current female marriage ages as well as the groom-bride age differences: one standard deviation in the CW index is associated with a 10 month reduction on the male-female difference in mean ages at first marriage. Furthermore, we can trace this effect back to the pre-industrial epoch using European historical data on marital ages from Dennison and Ogilvie (2014). Both these effects are robust against the other ‘deep drivers’ discussed in the literature, which in turn lose significance under control of CW. Furthermore, we demonstrate that this transmission channel has a sizable, robust, and significant impact on today’s gender gaps. In line with these results, we show in ‘reduced form’ estimates that CW has a large and significant impact on today’s gender gaps.

In the absence of experimental control, the two lurking threats to the validity of any causal interpretation are always reverse causality and omitted variable bias. Our research design diminishes these threats. The reason is the distinct temporal ordering of our variables along a far-reaching sequence of separate historic epochs, extending from (a) original environmental conditions manifest in cool water to (b) pre-industrial marriage patterns to (c) post-industrial gender-egalitarian outcomes. Ordering original, intermediate and outcome variables along such a sequence of consecutive epochs effectively eliminates

1For the link between family systems and gender equality in the pre-industrial era see, for example, Hajnal (1982); Hartman (2004); De Moor and Van Zanden (2010); Szoltysek et al. (2017). For evidence on persistent effects of historic family systems on contemporary socio-economic outcomes see Reher (1998); Duranton et al. (2009); Dilli (2015); Dilli et al. (2015); Rijpma and Carmichael (2016).
the possibility of reverse causality: there is no way that (a) could be endogenous to (b) or that (b) could be endogenous to (c). Hence, reverse causality is of no concern in our design.

With respect to omitted variable bias, we first note that the CW condition is exogenous to any of the variables we consider on the left-hand side of our causal chain. But there is always the risk that unobserved country characteristics might account for the relationship between CW and its hypothesized outcomes.

In order to address this problem, we go at length in double-checking our results against a myriad of possible confounding factors. First, we conduct multiple sensitivity tests to the composition of the sample and find that our conclusions are not driven by certain world regions or subregions. Second, we control for a battery of additional variables proposed in the literature and find that the CW effect persists throughout. Third, we estimate how large the effect of unobservables needs to be to explain away the CW effect. The effect of unobservables would have to be 2.38 times greater than the effect of the all the observable variables of our most restricted model taken together (see Altonji et al., 2005; Bellows and Miguel, 2009; Nunn and Wantchekon, 2011). Thus, it seems extremely unlikely that omitted variable bias alone could account for our results.

Another concern relates to the fact that countries did not exist in today’s borders invariently throughout the temporal scope of our analyses. But the territories that define today’s countries were physically already present in the past, and so were their cool water conditions, which apparently helped shape countries in today’s borders. This is obvious from the fact that, with the proliferation of an increasing number of independent nation states, political evolution has worked towards minimizing within- and maximizing between-country variation in cool water (indeed, today only 14 percent of the total spatial variation in CW is within while 86 percent is between countries). For this reason, it is appropriate to examine the world’s countries of today as the unit of analysis. But again, to eventually resolve remaining concerns about the appropriate unit of analysis, we “ancestry-adjust” the countries’ CW-scores using Putterman and Weil’s (2010) post-1500 World Migration Matrix. Doing so changes the unit of analysis from today’s countries to
ancestral populations. Since this exercise fully reproduces all of our major results, it is safe to conclude that they are not an artifact of using countries in today’s borders as the unit of analysis.

Finally, we wish to remark that replicating our evidence on the basis of sub-national regions within countries, while interesting, could only capture a minor part of reality, as only 14 percent of the spatial CW-variation is within countries.

In narrating and evidencing this “seed theory of emancipation”, the remainder of our article proceeds in the following steps. Section 2 reviews the literature and derives from this discussion our theoretical propositions. Section 3 introduces the data and variables used to demonstrate the empirical validity of our propositions. The fourth section describes the empirical strategy while section 5 presents the findings. Finally, we conclude with a discussion of our findings’ theoretical implications. An extensive Online Appendix (henceforth: OA), available at this journal’s website, describes variables, coding procedures, command syntax, supplementary results, explanatory notes as well as a download link to our data.

2 Theoretical Discussion

2.1 Original Sources of Gender (In)equality

Three recent studies suggest alternative origins as the decisive historical drivers of gender inequality today. To begin with, Alesina et al. (2013) revive Boserup’s (1970) thesis that the participation of women in pre-industrial agriculture differed significantly between plow-using and plow-free cultivation systems. The plow constituted a gender-biased technology as it required more upper body strength than alternative tools, such as the digging stick or the hoe. As a result, in societies that adopted the plow, women reallocated their time away from farming towards domestic activities. This labor division along gender lines became gradually encultured into enduring norms. Alesina et al. show that the fraction of a country’s population whose ancestors practiced pre-industrial plow agriculture is
negatively correlated with contemporary female participation in the labor force, politics and corporate ownership. Moreover, among children of immigrants in the US and Europe, those with plow-using ancestors hold less egalitarian beliefs about the appropriate role of women.

In contrast, Hansen et al. (2015) argue that the transition from humans’ original foraging lifestyle to sedentary agriculture as such is a driver of pre-industrial disparities in gender roles, no matter what particular cultivation methods have been used. As these authors suggest, the earlier the transition to sedentary agriculture happened, the more intense the cultivation methods became thereafter. Intense methods of cultivation generate a demand for cheap mass labor, which in turn increases the fertility pressures on women. As a consequence, women reallocate their time from fieldwork to raising children and other indoor activities related to caretaking. Societal beliefs about gender roles then incrementally evolved in support of this labor division. Accordingly, societies with longer histories of agriculture had more time to enculture patriarchal values in their moral systems. Indeed, Hansen et al. show that longer histories of agriculture are negatively correlated with female participation in the labor force, politics, education, as well as the sex ratio at birth. The correlation remains significant even after controlling for ancestral plow use, which retains its significance. Not only is this relationship present in a cross-country sample but also for a sample of European regions, and for a sample of second-generation immigrant children in the US.

The third study by Hazarika et al. (2015) argues that historic resource scarcity shaped cultures of gender discrimination. This claim is consistent with patterns of sex-inequality and resource availability in some non-human primate species, gender gaps in prehistoric human skeleton sizes, and contemporary evidence on the relationship between material deprivation and gender bias in intra-household resource allocation. According to this thesis, prehistorical differences in resource scarcity gave rise to a persistent culture of gender discrimination. The authors measure historic resource scarcity by limitations of arable land and show that these limitations are negatively correlated with present-day measures of gender equality across countries and population sex-ratios across districts in
While these insights are valuable, we add a fourth explanation that we believe adds an important element to understanding the deep drivers of gender inequality and also is able to provide a plausible transmission channel.

2.2 Historical Household Formation Patterns

Which of the remote drivers–plow-use, length of the agrarian legacy or land scarcity–exerts a stronger influence on gender equality today is one of our questions. A more important concern, however, relates to the mechanisms through which these drivers took effect. In this context, institutional economics in the tradition of North (1990) tends to focus on macro-level institutions, most notably the state. More recently, however, scholars like Duranton et al. (2009), Giuliano and Nunn (2013), Alesina and Giuliano (2014) and Doepke and Tertilt (2016) have re-discovered the importance of micro-level institutions at the grassroots of society, from which macro-level institutions evolve through certain mechanisms of bottom-up aggregation. The key grassroots institution in this sense is the family. Thus, informed by this renewed interest in historic patterns of household formation, we argue that the remote historic drivers influence gender equality today by the ways in which they shaped pre-industrial patterns of household and family formation.

The feature in pre-industrial household types receiving most attention refers to a bundle of elements that Hajnal (1965, 1982) branded as the “Western family pattern” and described as unique to Northwestern Europe (Todd, 1985, 1987; Hartman, 2004). This pattern has since been considered, by, among others, Hartman (2004); De Moor and Van Zanden (2010), as an early manifestation of the West’s individualistic, meritocratic and contractual orientation–an encultured mind-programming that theorists of civilization from Weber (1948) to Elias (1987) to Ferguson (2011) characterize as the source of the West’s emancipatory dynamic. Most interestingly in our context, the Western family pattern incorporates features that–compared to the family patterns in other agrarian civilizations–mean a higher degree of female equality relative to males (Hartman, 2004;
Based on archival records from the seventeenth and eighteenth centuries, Hajnal (1982) stresses four exceptional features of household formation in Northwestern Europe, which supposedly date back even earlier into Medieval times\(^2\): (a) late ages at first marriage for women, resulting in smaller age gaps between husband and wife; (b) a considerable proportion of women (and men) never married, which—together with late marriage—implied for women that they lived under lower pressure to maximally exploit their reproductive potential; (c) “neo-local” residence, that is, couples move into their own household upon marriage—a feature that reduces obligations to the extended family and, thus, fosters individual autonomy; and (d) a widespread practice among both adolescent men and women to work as contracted servants in non-kin households until marriage.

In sharp contrast, household formation patterns in the then advanced areas of the Middle East, China and India—which have survived with remarkably small changes until the twentieth century—involve the exact opposite features: (a) much earlier marital ages for women, often resulting in large age gaps between husband and wife; (b) near universal marriage, indicating an intolerance of women just living by themselves (including quick remarriage of widows); (c) “patri-local” residence: freshly married couples move into the household of the husband’s parents under their headship; and (d) an almost exclusive use of family labor for household production.

We, of course, acknowledge that substantial variation existed around these two stylized household systems (e.g., Szoltysek, 2014). But for reasons of clarity, it is helpful to take this simplification as a point of departure.

From the gender perspective, the most fundamental element of the Northwestern European household system is late ages at first marriage for women (Hajnal, 1965, 1982; Hartman, 2004; Smith, 1981). In Northwestern Europe, women would typically marry in their twenties, while in the early marriage systems of the Middle East, India, and China, brides

\(^2\)For example, in his classical study of the Germanic barbarian tribes, De Germania, from around 98 AD, Tacitus already describes a Germanic late marriage pattern, in contrast to the early marriage tradition of the Roman Empire: “The [Germanic] young men marry late and their vigor is thereby unimpaired. The girls, too, are not hurried into marriage. As old and full-grown as the men, they match their mates in age and strength, and the children reproduce the might of their parents” (quoted in Herlihy, 1985, p. 73).
would marry in their early teens immediately after puberty. In late marriage societies, women’s ages at first marriage were elastic with respect to local economic conditions (Smith, 1981; Carmichael et al., 2016) and, indeed, for certain societies, at certain points in time, ages at first marriage were very high even by contemporary standards: for example, the singulate mean age at first marriage (henceforth: SMAM) from Norway’s 1875 census was 27.3 years for women and 28.5 for men (Ruggles, 2009, Appendix Table). Similarly, it was on average 26 for women and 28 for men in rural Germany from 1740-1860 (Klasen, 1998). As a consequence of late marital ages for women, the age gap between the spouses was substantially lower than in early marriage societies where the husband would often be ten to fifteen years older than his wife. For example, in Bangladesh, the SMAM in 1974 was 16.4 years for women and 24 for men (UN 2009).

Another important aspect of late marriage societies is the high proportion of never married individuals of both sexes. At times, the never married constituted more than ten percent of the adult population in pre-industrial Northwestern Europe, whereas they were rarely more than five percent of the adult population in early marriage societies (Hajnal, 1965, 1982).³

In late medieval Northwestern Europe, late marriages were intimately linked with the institution of service through which a large share of young boys and girls would leave the parental household in their early- to mid-teens and circulate as servants on a contractual basis, typically for several years until marriage. The practice of contracted, non-kin service means that households form on the basis of consent instead of lineage. The fact that marriage itself has been an act of agreement among adult non-relatives, instead of being pre-arranged among people belonging to the same family circle, further detached household formation from lineage and strengthened its contractual character. Apparently, the contractual household system reaches as far back in time as mid-fourteenth century in England (Poos, 1991) and even the ninth century around Paris (Herlihy, 1985), if not even earlier. Importantly, service did not mean domestic service, in fact “[m]ost servants were

³See Hartman (2004, ch 3) for a review of the historical evidence. See Lagerlöf (2003) who argues that the early spread of Christianity to Northwestern Europe also influenced this more gender equal pattern of marriage, including allowing widows to remain unmarried and inherit the property of the family.
not primarily engaged in domestic tasks, but were part of the workforce of their master’s farm or craft enterprise” (Hajnal, 1982, p. 473). Contractual household service defied a vertical allocation of labor across social strata: “It was not only the poor and landless whose children went into service. Those who operated their own farms and even farmers with large holdings sent their children into service elsewhere, sometimes replacing them with hired servants in their own household” and “[t]here was no assumption that a servant, as a result of being in service, would necessarily be socially inferior to his or her master” (Hajnal, 1982, pp. 471 and 473). Thus defined, the institution of service fulfilled two roles in late marriage societies: it provided (i) a subsistence base for unmarried young men and women as well as a means to accumulate sufficient savings to then start a family, as well as (ii) a flexible workforce for ageing farm tenants in need of support.

The same logic clarifies why contracted household service was not a widespread phenomenon in early marriage societies: whenever girls married at puberty, there was no chance for service to be part of their premarital life-cycle, and the availability of family labor—including children—in multi-generational households meant that local labor markets were peripheral.

2.3 Implications for Gender Equality

The Northwest European system of late marriage for women and life-cycle service for the young had profound implications for gender relations. While Hajnal already outlined the most important of these implications, Hartman (2004) extends the analysis in both breadth and depth.4

First, marrying later reduced women’s child rearing burden during the most productive years of their life cycles. In addition, women marrying in their mid-twenties are more mature, experienced and arguably more confident than women marrying at puberty. Com-

4Remarkably, the implications of gender gaps at first marriage were well understood early on, as recorded in legal codes and councils from early medieval Europe (Herlihy, 1985). For example, a late eight century council (796-97) held at Fréjus, in today’s Southeastern France, “explicitly states that the groom and bride should be “not of dissimilar age but of the same age.” Many abuses take place, it warns, when the groom is adult and the bride immature, or vice versa. [...] The council strongly advocated that marriage unite mature partners of equal age” (Herlihy, 1985, pp. 75-76). Thus, the implications derived in this section are not anachronistic.

9
bined with a smaller age gap to their spouses, women in late marriage societies accordingly enjoy more intra-household bargaining power than their early marriage counterparts. Moreover, in late marriage societies, the intervals between generations are inevitably larger than in early marriage societies. Therefore, while it was common for newly married couples to head their own household, it was typical of earlier marriage societies for the wife to join the husband’s multi-generational household. As a result, in early marriage household systems, there are often more individuals positioned above the young wife—not only her parents-in-law but also other members of the husband’s kin, like his siblings, uncles, and cousins. In such a setting, a freshly married woman has little bargaining power. To sum up, the absolute age at first marriage, the age gap between the spouses, and the amount of household members who are hierarchically superior to the wife are all important determinants of adult women’s status in the household.

Second, in late marriage societies, individual consent is a necessary condition for marriage, whereas in early marriage societies parental arrangement is a decisive, not personal choice. The mere fact of marrying later meant that a considerable proportion of freshly married couples’ parents had already passed away at the time of their marriage. For instance, “as in sixteenth-century Lyon, one-third of teenagers becoming apprentices and one-half of the young women marrying for the first time were fatherless; [and] as in seventeenth-century Bordeaux, more than one-third of the apprentices had neither parent alive” (Davis, 1977, p. 87; emphasis added). In contrast, in earlier marriage systems, young women were more likely to have living parents at the time of their marriage and living in-laws throughout a substantial portion of their marital years. Unsurprisingly, marriage norms in these systems were tilted towards parental arrangement rather than individual choice (e.g., Edlund and Lagerlöf, 2006). It is plausible to assume that individual choice

5Ebenstein (2014) shows that patrilocality correlates strongly with the amount of “missing women”, i.e., larger male-to-female sex ratios.

6For example, Frayser (1985) gathered anthropological data on the prospective wife’s consent to marry and her age at first marriage (variables v971 and v967, respectively, from http://eclectic.ss.uci.edu/~dr-white/courses/SCCCodes.htm). Of the 43 societies for which both variables are available, 86 percent of those where women’s age at first marriage was, on average, above 18 required the consent of the prospective bride or, at least, that she be consulted. In contrast, 40 percent of the societies where women married below 16 years old required no consent or even consultation from the prospective bride.
lowers the intra-household bargaining costs for both spouses; either because they match with partners that have similar preferences, or because mutual consent brings about a higher degree of altruism to individual preferences.

[Figure 1 about here]

Third, the institution of contractual farm service is a driver of gender equality norms and behaviors in its own right. As shown in Figure 1, contractual service was a common phase in the life-cycle of both men and women across Northwestern Europe. Indeed, it is striking how similar the patterns of service were among the life-cycles of both sexes: the prevalence rates are not too different in absolute terms (although, in general, they were higher for men across all age-groups) and their age-distributions are remarkably similar. Over the life-cycle, service started roughly at 15-19 years of age for both sexes—an age range at which most women in early marriage societies were already married. Service peaked at 20-24 years of age and then declined as people left service to get married. As a result, the life-cycle of young men and women in late marriage societies is much more similar than in early marriage societies, where young brides are separated early on from their male peers by the experiences of marriage and motherhood, often living in seclusion. The convergence of life experiences between the sexes in Northwestern Europe was thus a force challenging the boundaries between gender identities. By contrast, the divergence of life experiences early on in the Middle East, India or China, kept gender identities and domains of activity strictly separate (Hartman, 2004).

In Northwestern Europe, the years of service were an ideal opportunity for young people to accumulate savings, skills, and meet potential marriage partners (Hajnal, 1982; De Moor and Van Zanden, 2010). For the young servants, high mobility (De Moor and Van Zanden, 2010) strengthened their maturity and weakened patriarchal norms, to the benefit of women (Reher, 1998; Hartman, 2004). As summarized by Hajnal (1982, pp. 474-475), "While in service, women were not under the control of any male relative. They made

7 A similar institution existed in Japan; see Cornell (1987). Among all non-Western agrarian civilizations, Japan is the one whose geo-climatic configuration is by far the closest to Northwestern Europe’s (as defined by the Cool water index, see Section 3).
independent decisions about where to live and work and for which employer. There was also financial independence even though women servants’ wages were lower than men’s."\footnote{A recent study on eighteen-century Amsterdam shows that wages earned by female servants were substantial: “most servant women could save between one-third and half of the amount of money an unskilled man could save in the same period of time” (Boter, 2017, p. 71).}

To avoid misunderstandings, we are by no means claiming that late female marriage ages created anything close to a perfect balance in gender value. In fact, studies have found that also there gender inequality, for example in survival opportunities, existed (e.g., Klasen, 1998) although the magnitude of the gender gaps tended to be smaller than in current-day South Asia or China (Klasen, 2003). Instead, we suggest late marriage societies generated opportunities for female individualization that were not available for their early marriage counterparts.\footnote{Centuries-old household formation systems shape women’s self-perceived agency and expectations about, say, partner selection and marital consent. For example, in the Indian Human Development Survey of 2005, 55 percent of married women who felt they played a role in the selection of their husbands first met them close to or on the wedding day (Banerji et al., 2008); a situation hard to conceive of wherever mutual consent, instead of parental consent, is the prevailing norm.} While these opportunities did not eradicate women’s discrimination, they built the basis for emancipatory struggles against it. The consequences of these struggles are evident in the global variation in gender discrimination across countries today. Indeed, women of late marriage societies were in a better position to turn external events to their own advantage. The experience of service, for instance, could be turned into labor force participation during war periods (Acemoglu et al., 2004; Goldin, 1991). Centuries of high fertility elasticity with respect to environmental factors facilitated the adoption of modern family planning technologies, such as the contraceptive pill (Albanesi and Olivetti, 2007; Goldin and Katz, 2002). Moreover, a legacy of consensual marriages, joint decision making, pooling of resources at marriage, and higher female bargaining power meant that women could reap the benefits of new consumer technologies that greatly reduced the burden of household chores (Cavalcanti and Tavares, 2008; Coen-Pirani et al., 2010; Greenwood et al., 2005). In early marriage societies, these opportunities passed by without major changes in the position of women.
2.4 The Origins of Household Formation Patterns

Diamond’s (1997) epic *Guns, Germs and Steel* reinvigorates the notion that agriculture is forcefully shaped by an environment’s natural endowments. Specifically, what kinds of crops can be grown and what type of cattle can be bred depends directly on climatic conditions, especially a climate’s thermo-hydrological configuration, that is, temperature and water patterns. Consequently, the ways in which farming households form in an agrarian economy should be a response to the challenges and opportunities embodied in this economy’s climatic conditions. Should this be an accurate premise, the peculiarity of the Northwest European household pattern should be a response to the peculiarity of its climatic conditions.

This raises the question of what is so particular about the climate in Northwestern Europe. And if there is something particular about it, why does it incentivize a late marriage type of household formation?

In trying to answer this question, Welzel (2013, 2014) summarizes the particular thermo-hydrological constellation of Northwestern Europe’s climate as the “Cool Water” (CW-) condition. The CW-condition combines periodically (albeit not permanently) frosty winters with mildly warm summers under the ubiquitous and permanent accessibility of fresh water sources. The CW-condition is indeed most prevalent in Northwestern Europe and fades gradually away as one moves to Eastern and Southern Europe. Outside Europe, the CW-condition only prevails in the former settler colonies of Northwestern Europe (i.e., parts of North America and Australia and New Zealand) and—at a less pronounced level—in Japan, the Korean peninsula and adjacent territories in East Asia as well as the isolated Southern tips of South America and Africa. According to Welzel, the significance of the CW-condition originates in the fact that it bestows on people some very basic existential autonomies that are absent under other conditions. These autonomies incentivize a late marriage type of agrarian household formation. Two types of existential autonomy are particularly noteworthy: reproductive autonomy and water autonomy.¹⁰

¹⁰See Welzel (2013, 2014) for broader implications of the CW-condition for long-run development. Here, the discussion focuses exclusively on household formation patterns.
Reproductive autonomy is the degree to which people are exempted from the pressure to maximize fertility. A crucial determinant of fertility pressure in agrarian societies is the infant mortality rate incurred naturally by an environment’s pathogen load, the infectiousness of its water sources, the scarcity of fresh water, dairy products and other foods, and heat stress. Welzel claims that the thermo-hydrological features of the CW-condition reduce these risk factors—a claim supported by evidence showing that the CW-condition correlates with (i) lower natural pathogen loads and (ii) lower child mortalities in pre-industrial times. Thus, women in CW-areas could afford lower fertility levels to achieve the desired number of children that survive into adulthood.\footnote{We speculate that this is the mechanism implicit in Alfred Marshall’s observation, back in 1890, that: “The age of marriage varies with the climate. In warm climates where childbearing begin early, it ends early, in colder climates it begins later and ends later; but in every case the longer marriages are postponed beyond the age that is natural to the country, the smaller is the birth-rate; the age of the wife being of course much more important in this respect than that of the husband” (Marshall, 2013, p. 150).}

Moreover, the type of combined cereal-livestock farming made possible by the CW-condition requires lower labor inputs than, for instance, irrigation-managed agriculture and rice or tropical crop cultivation. Lower demands for labor inputs, including child labor, further reduce fertility pressures. Hence, women enjoyed more reproductive autonomy with respect to the timing of first marriage, the interval between pregnancies, and a higher recognition of their worth beyond the birth and care of children.

Reproductive autonomy partly originates in climatically induced disease security. The prevalence of non-host pathogens—from Malaria to yellow fever, dengue fever and other tropical diseases—increases with average temperatures, a fact known as the latitudinal gradient (Cashdan, 2014; Guernier et al., 2004). Before 1750, infant mortality was mainly determined by infectious diseases (e.g., Deaton, 2013, pp. 81-87).\footnote{Of course, Northwest European countries were early adopters of modern public health innovations, such as vaccinations, from the second half of the eighteen century onwards. Ager et al. (forthcoming), for example, show how the introduction of the smallpox vaccine in Sweden in 1801 reduced infant mortality and, consequently, gross fertility. In this article, we are referring to long-run pre-industrial differentials in infant mortality before such innovations became available. For example, in 1750-1800, before the introduction of smallpox vaccination, Sweden’s infant mortality rate was fluctuating around a stable mean of 211 deaths out of 1000-live births (Ager et al., forthcoming, Figure 3, Panel A). In 1960, the corresponding figure was 210 in Egypt, and 220 in Nepal; in 1965, it was 225 in Afghanistan, and 263 in Yemen (World Bank, 2016). If we assume that these latter countries experienced some improvement in infant mortality rates in the two hundred year period 1750s-1960s, they must have exhibited historical infant mortality rates that were substantially higher than those of Sweden. The lack of available cross-country data on preindustrial infant mortality rates, particularly for non-European countries, prevents us
cold temperatures and abundance of fresh water lower the pathogen load, also because fresh water is safer under cold temperatures (Cashdan, 2014). The resulting lower fertility requirement in CW-areas meant that women’s time was less constrained by childrearing; young women could therefore postpone marriage in response to labor market incentives (Smith, 1981).13

Water autonomy is the ability to access fresh water freely and permanently either for consumption, fishing, agriculture, transportation, or water power. Water autonomy is higher in colder, rainy areas. The availability of water was a major constraint for farming households in traditional agrarian societies. Areas suitable for large-scale irrigation agriculture developed more autocratic institutions and labor-repressive regimes compared to rain-fed agricultural societies (Bentzen et al., 2017). The coordination of large irrigation infrastructure projects and the allocation of scarce water resources among farmers were best achieved by a centralized authority that could enforce water-sharing rules and collect taxes to finance infrastructure investment. The monopoly of scarce water resources then became an instrument through which a small landowning elite confiscated rents from a mass of peasant households. This system of agricultural production was typical of Middle Eastern, Andean and Mexican societies, as well as India and China (Wittfogel, 1957). In contrast, rain-fed agricultural production was highly decentralized. The level of rents extracted by large feudal landowners in Northwest Europe never reached the amount extracted by their irrigation-areas counterparts (e.g., Jones, 1981; Mitterauer, 2003; Powelson, 1994). Moreover, the ubiquitous availability of fresh water makes most available land arable, thus turning valuable land into a ubiquitous asset that defies centralized control. Entry barriers and fixed costs of farming are lower when there is no need to maintain expensive irrigation (Haber, 2012). Finally, the lush pastures typical of CW-areas lend themselves to a combined form of cereal and livestock farming that widens nutritional options and easily

13 Some authors have proposed a direct link between high pathogen prevalence and collectivist cultures, as societies develop strong distrust of strangers and in-group bias as an evolutionary strategy against infectious diseases (Fincher et al., 2008; Murray and Schaller, 2010). This theory could also explain why, in high pathogen prevalence areas, preferences for extended households based on kinship were relatively stronger.
feeds a small family while keeping the demand for child labor at the low end. Together with a lower infant mortality, the weak demand for child labor further reduces the fertility pressures on women.

Thus, areas with cool temperatures and rainfall throughout the seasons enhance water autonomy and reproductive autonomy, thus proliferating the natural basis of egalitarian individualism and its expression in the late-marriage system. Over time, these marriage patterns became embedded in both formal and informal institutions, thereby persisting until today. We note that, in theory, the CW condition could still have a direct impact on present day marriage ages. We believe however that, if present, this direct effect is at most marginal. The mechanisms of reproductive and water autonomy lost relevance in most modern countries either because family farming is now a residual activity, or because medical innovations and public health measures have weaken the link between geography and infant mortality. Therefore, we posit that any persistence of the CW effect on contemporary marriage patterns runs through the long-term effect of CW on historical marriage patterns, rather than through a contemporary direct effect.

Voigtländer and Voth (2013) highlight another important mechanism. They show for early modern England that a higher share of land devoted to animal husbandry, relative to plow agriculture, increased the ages at first marriage for women and the proportion of young women in service. The reason being that, given their comparative disadvantage in plow agriculture, women have higher employment prospects in pastoral farming. According to Voigtländer and Voth, another push towards the late marriage pattern resulted from the Black Death, which wiped out at least one third of the European population in the fourteen century. Consequently, the land-to-labor ratio increased, which made animal husbandry more attractive because it is a land-intensive and labor-saving sector compared to plow agriculture. Yet, a shift to animal husbandry was an option only in regions where there was sufficient rainfall to sustain year-round grazing fields. In contrast, “[a]gricultural conditions in Mediterranean countries did not favor the pastoral farming of the type common in Northwest Europe. In particular, low rainfall made it impossible to keep large herds of
cattle and sheep in the same area year-round” (Voigtländer and Voth, 2013, p. 2250).14 Thus, if the Black Death was indeed the event responsible for a further push towards the late marriage pattern15, its impact was conditional on local geo-climatic characteristics embodied in the CW-condition.

The timing of the transition to sedentary agriculture is a potential confounding factor of our CW-thesis. Especially in Europe, agriculture spread from the Fertile Crescent towards the European peripheries until it reached Northwestern Europe around 5,000 BCE. Clearly, this was a transition from a warm and arid core towards increasingly colder and wetter regions. Thus, the effects we attribute to the CW-condition could be very hard to distinguish from those of being a later adopter of agriculture. However, existing evidence contradicts this idea. In a detailed study, Olsson and Paik (2016) explore how the spread of agriculture throughout European sub-national regions affects contemporary individualistic values, measured from World Value Survey data. They show that, in the period 9,000-5,500 BCE, the diffusion of agriculture across Europe from Southwest Asia is correlated with lower preferences for obedience; i.e., regions with shorter agricultural histories value obedience relatively less. However, this relationship completely disappears after 5,500 BCE, just as agriculture is about to reach Northwestern Europe (Olsson and Paik, 2016, Table 5). Over the two millennia during which agriculture spread throughout Northwestern Europe, there is no correlation between the timing of agricultural adoption and societal preferences for obedience.

Our theory explains this apparent puzzle. It is the CW-condition, not the years of agriculture, that explains societal preferences for obedience. The correlation between obedient orientations and the length of the agrarian legacy exists only as long as the CW-areas remain non-agrarian. In the moment they turn agrarian, the correlation vanishes and it does not matter anymore when the transition took place. What mattered was that, once adopted, agricultural societies in those regions enjoyed higher levels of reproductive and water autonomy than their Southern and Eastern European neighbors. As a result, over

14In regions where animal husbandry depends on great distance traveling, this activity becomes incompatible with childrearing and women lose their comparative advantage.

15See Dennison and Ogilvie (2014, p. 673) for a rebuttal of this claim.
the centuries, CW-areas preserved the lower valuation of obedience typical of pre-agrarian societies, independently of the length of their agricultural histories.16

From the theoretical discussion above follow four propositions, which the remainder of this article will investigate thereafter:

(1) A society’s CW-condition correlates positively with its historical age at first marriage for women. Because of data limitations, we demonstrate this proposition mostly for European countries and a selection of non-European countries, representing major civilizations in pre-colonial history.

(2) Because centuries-old household formation patterns become encultured in a society’s enduring norms, a society’s CW-condition correlates positively with contemporary ages at first marriage for women. We demonstrate this proposition for all countries in the world with available data.

(3) Historically as well as contemporary late ages of marriage for women are positive determinants of various gender egalitarian outcomes today, mediating the initial impact of the CW-condition.

(4) The CW-condition’s emancipatory impulse is not absorbed by other deep historical drivers championed in the literature but is a significant driver even when controlling for these other effects.

3 Data and Descriptives

We briefly describe the variables used in the empirical section and present selected descriptive statistics. A full list of all variables used, their sources and summary statistics can be found in Table A1.

As main contemporary measures of gender equality, we use the average female to male ratio in 1990-2010 for: (i) labor force participation rates for the age group 25-59 from the

16A further piece of evidence consistent with our interpretation is that the effect of years of agriculture on preferences for obedience stops being statistically significant as soon as latitude is included as a control variable (Olsson and Paik, 2016, Table 3a).
ILO Laborsta EAPEP 6th Revision (2011), (ii) life expectancy at birth from the World Bank’s World Development Indicators, and (iii) mean years of education of the 25+ years old from Barro and Lee (2013). In addition, we consider the share of firms with some degree of female ownership, the share of parliament seats held by women, and the UNDP’s Gender Development Index.

Our contemporary data for ages at first marriage is from the United Nations’ World Marriage Data (UN 2009), which covers the period 1960-2008. We use the singulate mean age at first marriage (SMAM) for men and women. For each country, we select data from its first available year, which ranges from 1960 to 2006 (see Table 1) with the period 1960-1980 accounting for 80 percent of the observations.\(^{17}\)

We take historical data on European female ages at first marriage from Dennison and Ogilvie (2014). They collect marital ages between 1500 and 1900 from 365 studies on historical demography and harmonize the data by regressing the marital ages on several characteristics of the sources from which they were extracted.\(^{18}\) We use the country-specific coefficients from that multivariate regression, where England is the omitted country (Dennison and Ogilvie, 2014, Table 2). The fact that female ages at first marriage were rising, on average, throughout the whole 1500-1900 period is not a major issue since Dennison and Ogilvie’s regression also controls for the historical time period covered by each of the demographic studies, thereby purging the country-specific estimates from any trend effects. Denmark’s 2.36 value, for example, “shows that its female age at first marriage was 2.36 years higher than England’s, controlling for time period, unit of observation, settlement size, publication type, and sources and methods used” (Dennison and Ogilvie, 2014, p. 663). Table 1 shows that, on average, the 28 European countries for which data are available have female ages at first marriage around 2 years below that of England. Yet, there is substantial variation: Belarusian brides were almost 7 years younger (at first marriage) than their English sisters, whereas Danish brides were approximately 2

\(^{17}\)We make only two adjustments. First, for Malta, we do not use data from its first available year, 1967, because it includes nationals who are temporarily outside the country; instead we use data for the next available year, 1985. Second, for Jamaica, we do not use the first available year, 1970, because it is an extreme outlier from trend, as shown in Figure 8; instead we use data for the next available year, 1982.\(^ {18}\) Carmichael et al. (2016, p. 200) discuss limitations of these data.
years older. The female age at first marriage for England, the reference country, is 25.26 years.

For non-European historical data, we take Gapminder’s female SMAM for the period 1800-1900. Of the 27 countries with available data, 11 are non-European. We interpret these data with caution, since they are collected from a variety of sources and, in some cases, supplemented by qualitative adjustments or backward extrapolations by Gapminder.

Considering the deep historic determinants of gender equality, we use the three variables most prominently discussed in the literature. To begin with, years of agriculture is the number of thousands of years from 1500 C.E. since the Neolithic revolution, as provided by Putterman and Trainor (2006). Plow usage and agricultural suitability are taken from Alesina et al. (2013), with plow usage indicating the proportion of a country’s population with ancestors that used the plow in pre-industrial agriculture. Agricultural suitability measures the suitability of ancestral land for the cultivation of barley, wheat, sorghum, rye, foxtail millet, or pearl millet. Summary statistics for these variables are shown in Table 1.

The Cool Water Index

Measuring the CW-condition, we rely on geo-climatic data from Parker (2000) as well as Gallup et al. (2010). These data have no specific time frame. Thus, apart from minor short-term fluctuations—such as the little ice age and interglacial warming—the CW-condition captures territorial differences in thermo-hydrological conditions that have been relatively constant over the past 11,000 years when the last ice age ended.

The CW-condition constitutes a specific thermo-hydrological configuration—namely, the combination of cold winters with mild summers under the ubiquitous availability of fresh water. This condition is prevalent in territories of high latitude in coastal proximity, although much larger such territories exist in the Northern than in the Southern hemisphere.

19 Armenia, Azerbaijan, Bangladesh, China, Egypt, Georgia, India, Japan, Kazakhstan, Pakistan, Sri Lanka, and United States.

20 For more details, see the original documentation of these data at https://www.gapminder.org/wp-content/uploads/2008/10/gapdoc009.pdf. For the 10 European countries for which both Gapminder and Dennison and Ogilvie (2014) report data, the correlation coefficient is 0.95. Non-European data are of much lower quality. They are only used for an additional analysis; results are posted in the Online Appendix.
given the earth’s uneven landmass distribution.

To capture the CW-condition’s thermal aspect, we take latitude as the starting point, using each country-centroid’s latitude in degrees.21 Higher latitudes get us away from the tropics and into areas with lower seasonal temperatures on average.

However, not all high latitude areas comprise the CW-condition’s moderate seasonality, which combines winter cold with mostly mild summer heat. Thus, we need to further qualify latitude for this additional thermal condition. To do so, we take the usual peak temperature (in degrees Celsius) in a country-territory’s hottest month of the year, which is July or August in the Northern hemisphere and February/March in the South. Interestingly, while average annual temperature correlates strongly and negatively with latitude22, summer heat is uncorrelated with latitude.23 For instance, summer heat peaks are as high in Mongolia as they are in Somalia. This pattern reflects the fact that mild summers mostly prevail in high latitudes but not all high latitudes belong into this category because they are divided into continental climates (with high summer peaks) and maritime climates (with low summer peaks). Thus, latitude is an ideal representative of cold winters, yet not of mild summers. To measure indeed the mildness of summers, we calculate the inverse of peak summer heat.

For the very same reason, high latitudes include most of the countries that possess the hydrological features of the CW-condition, and yet this is only a subset of the countries in high latitudes. Therefore, it is necessary to capture the hydrological features of the CW-condition by an additional, independent measure: continuous rain.

To capture continuous rainfall, average annual precipitation per month would be a misleading yardstick. The reason is that average annual precipitation correlates strongly with tropical climates and negatively with latitude24 and is, thus, untypical for CW-regions.

21The highest latitudes are 90 degrees at the poles. No country-centroid comes even close to that. In the Northern hemisphere, the highest latitude is obtained by Norway at about 67 degrees. In the Southern hemisphere it is New Zealand at about 42 degrees. We equate Norway’s 67 degrees with 1 and standardize all other country-centroids’ latitudinal degrees to this maximum.

22The country-centroids’ latitudes correlate with the countries’ annual mean temperatures at $r = -0.89$ (N=183; p-value = 0.001, 2-tailed).

23$r = 0.07$ (N=183; p-value = 0.336, 2-tailed).

24Average annual rainfall per month and latitude correlate at $r = -0.53$ (N=177; p-value = 0.00, 2-tailed).
Most tropics have a monsoon season in which the extreme amounts of rain that cumulate is excessive and water, while abundant, is wasted and/or harmful (e.g., floods). Misleadingly, in the measure of average annual precipitation per month these extremes inflate the yearly average. Thus, the necessary qualification needed to capture the CW-condition’s typical precipitation pattern is a focus, instead, on whether the rainfall in a region’s driest month is high. To capture this feature, we use the typical rainfall level (in cubic millimeters) in a country’s driest month. To correct a distribution skewed to the top in this measure, we calculate its square root. Doing so moves extreme outliers at the high end of this measure (i.e., Pacific islands) closer to the center of the distribution. We call this measure henceforth continuous rain.

The next question is how to combine (1) latitudinal height, (2) summer mildness, and (3) continuous rain. These measures should be combined in a way that best represents in a single indicator the thermo-hydrological configuration typical of the CW-condition. Instead of imposing an a priori theoretical solution on this problem, we chose an empirical approach in subjecting the three measures to an exploratory factor analysis. As it turns out, the three measures reflect two independent dimensions. Continuous rain and mild summers represent one dimension, with factor loadings of 0.80 (mild summers) and 0.77 (continuous rain). High latitudes, by contrast, represent a separate dimension of its own on which only this measure shows a major loading (i.e., a factor loading of 0.95).

In terms of substance, the first dimension of this factor solution represents maritime climates, which capture the water-component of the CW-condition. The second dimension, by contrast, represents what is unique to high latitudes irrespective of maritime climates, which is cold winters. In other words, the second dimension captures the coolness-component of the CW-condition.

These results show that CW is a condition that combines two independent components into a single configuration. Accordingly, the measurement of CW should represent this

25 Steady rain in this definition is literally uncorrelated with average annual rainfall per month.
26 The factor analysis has been conducted across 183 countries for which all three measures are available. The analysis has been conducted under the “Kaiser-criterion,” advising the extraction of as many factors as there are with Eigenvalues above 1. The factor loadings we report are obtained after a “varimax-rotation.” The factor solution explains 75 percent of the variance.
pattern and proceed as an additive combination of its two independent components. Following this premise, we calculate for each country its factor score on the first dimension (i.e., the water factor) and on the second dimension (i.e., the coolness factor). The latter represents the coldness of winters independent of maritime climates, for which reason country scores on the first dimension (i.e., the water factor) and the second one (i.e., the coolness factor) are uncorrelated. Hence, we can calculate CW as an additive combination of two independent components by taking the arithmetic mean of the water and the coolness factor.

Should the effects of CW’s coolness component and its water component indeed add on each other, this additive combination will capture both effects in a single measure. In other words, if it is really the combination of coolness and water that makes the difference, this additive measure will isolate that effect.

In addition, however, as a validity check, we point to evidence that the CW-condition, as measured here, correlates with a similar measure of climatic configuration. In the Koeppen-Geiger classification of climate zones (Peel et al., 2007), the CW-condition correlates strongly with a country’s proportional land area in what is called the cold-to-temperate zones that lack a dry season.

We also acknowledge that a key concern with our CW-index relates to differences in country area size. Indeed, scores on the CW-index might not be comparable across countries with different area sizes when bigger size implies higher within-country variability in the CW-condition. In the Online Appendix, we deal with this issue. Territorial country size is entirely unrelated to within-country variability in the CW-condition. Moreover, only 14 percent of the total variation in the CW-condition is within countries, while 86

\footnote{We compute regression-based factor scores, i.e. weighted averages of factor loadings, the raw variables of interest, and the inverse of their covariance matrix (Thompson, 1951).}

\footnote{We do this after having normalized the two factor-z-scores for each country into a range from 0 for the lowest scoring observation and 1 for the highest scoring one.}

\footnote{A country’s CW-condition correlates with its territorial share in the temperate-rainy climate zone (called “cf”) at \(r = 0.66 \) and with its territorial share in the cold-rainy zone (called “df”) at \(r = 0.49 \) (N=156; p-value = 0.00, 2-tailed for both correlations).}

\footnote{A previous version of this index (Welzel, 2014) also included the coastline share of a country’s borders as a proxy for temperate maritime climates. We discuss this change and compare the two versions in the Online Appendix.}
percent is between countries. Hence, country-mean differences in the CW-condition are significant and meaningful as they capture by far most of the existing territorial variation in CW-conditions.\footnote{For a world distribution of the CW-index see Figure 9.}

To ensure comparability to the previous literature we take the same set of baseline historical controls used by Alesina et al. (2013): (1) the presence of large domesticated animals, (2) the number of levels in political hierarchies, and (3) the level of economic complexity proxied by the type of settlement patterns (e.g., nomadic vs. complex settlements). The only exception is that we do not include the proportion of ancestral land that is tropical or subtropical in our baseline specification for reasons discussed below. Nevertheless, we include this variable in our set of additional controls for robustness checks. As contemporary controls, we follow the literature in using the natural log of per capita income and its square.\footnote{We use a large set of additional control variables in our robustness checks. For convenience, these are introduced in the text whenever necessary. For a full list see Table A1.}

For Europe, we find that ages at first marriage for women have persisted over centuries. Figure 2 displays the positive correlation between historical and contemporary marital ages for women. Countries with higher marital ages for women in 1500-1900 have older brides at first marriage in the postwar period. Moreover, as hypothesized, there is a negative correlation between the husband-wife age gap and the CW-condition (Figure 3). The relationship looks fairly linear and has no outliers; furthermore, it is not just a “European artifact” but holds in striking clarity for different continents and world regions (Figures 4-7). To test more rigorously if these descriptive correlations are in fact meaningful, we move to a multivariate regression framework which is outlined in the next section.

\footnotesize

[Table 1 about here]

[Figures 3-7 about here]

\footnotesize
4 Empirical Strategy

We test our hypotheses by estimating regressions of the form:

\[y_i = \alpha + H_i'\beta + X_i^{H'}\gamma + X_i^{C'}\delta + \theta_c + \epsilon_i \]

(1)

where \(y_i \) is the outcome variable of interest for country \(i \); \(H_i \) is a vector of potential deep determinants–CW-index, years of agriculture, plow, and agricultural suitability; \(X_i^{H} \) is a vector of historical controls of country \(i \)’s ancestral population; \(X_i^{C} \) is a vector of contemporary control variables; \(\theta_c \) is a continent fixed effect. To ensure comparability to the previous literature we take the same set of historical controls used by Alesina et al. (2013). Unlike Alesina et al. (2013), we do not include the proportion of ancestral land that is tropical or subtropical in our baseline regressions because tropical areas are already partially captured in our CW measure: they correlate very strongly with lower latitudes. Accordingly, ancestral tropical climate correlates strongly and negatively with the CW-index \((r \approx -0.72)\), while being, in our view, a much less fine-grained geo-climatic measure than the CW-index. Nevertheless, we estimate additional regressions where tropical climate is included to show that the CW-index is not merely capturing different degrees of exposure to tropical climates. As contemporary controls, we also follow previous literature in using the natural log of per capita income and its square, typically referring to the same time period of the outcome variable, \(y \). The inclusion of income levels on the right hand side of (1) raises the issue of endogeneity, to the extent that most of the other historical regressors are thought to partially determine current income levels. However, since we are interested in the persistent effect of deep determinants in contemporary outcomes, it seems natural to condition on contemporary income levels. The empirical exercise then “asks” the following question: how relevant are deep rooted variables for explaining the share of variation in \(y \) that is left unexplained once current income levels have been taken into account?

The main potential flaw of our empirical strategy is that the effect of the CW-index
might be spurious due to omitted variable bias. Given the cross-sectional nature of our data, we cannot remove time-invariant unobservables by employing country fixed effects. We go at great lengths to convince the reader that our relationships of interest are not driven by third factors: first, we explicitly control for several “candidates” of such omitted factors in additional regressions; second, we estimate how large selection on unobservables needs to be relative to selection on observable characteristics in order to fully explain away the CW-effect (Altonji et al., 2005; Bellows and Miguel, 2009; Nunn and Wantchekon, 2011).

Moreover, we test the sensitivity of our estimates to subsample selection. In particular, we differentiate between Old vs. New World samples to prevent mass migration movements post-1500 from biasing our results (e.g., Olsson and Paik, 2016, p. 205), and exclude, respectively, Europe and Sub-Saharan Africa from the sample because the former is home to the most extreme historical version of a late marriage pattern and the latter is unique in its prevalence of polygamous marriages.

5 Results

5.1 Ages at First Marriage and Gender Equality

We start by establishing that contemporary ages at first marriage between the spouses are an important determinant of gender equality today (Table 2). We use several alternative measures for contemporary ages at first marriage: the female and male SMAM, the ratio of female-to-male SMAM, and the difference between male and female SMAM.\(^{33}\) The indicators of gender equality are the average female-to-male ratios in labor force participation rates, life expectancy, and years of education for the period 1990-2010.\(^{34}\)

\(^{33}\)Note that these three measures have different interpretations. When including both the female and male SMAM as separate regressors, their coefficients estimate the effect on \(y\) of one additional SMAM, on average, for gender \(X\), holding the SMAM for gender \(Y\) constant. When using the ratio between female and male SMAM, one implicitly weights the age differences between the spouses in the inverse proportion of their age levels. When using the simple difference between male and female SMAM, one weights age differences equally, irrespective of the average age level of the spouses at first marriage.

\(^{34}\)We average the dependent variables over a 20-year period because a single year might be unrepresentative of the actual cross-sectional differences between countries. The results are robust to using the
Due to reverse-causality concerns, we use the earliest available year of SMAM data for each country and exclude countries whenever this year is later than 1990. To account for possible worldwide trends in SMAM over time, we include the year of the SMAM observation as a control variable.\footnote{As a robustness check, we run the analyses taking the earliest data point for the period 1985-1994. By reducing the time window considerably, we can avoid potential inter-temporal comparison difficulties— for example, if the prevalence of marriage itself is changing heterogeneously across countries. While our sample size is reduced from 119-132 countries to 101-115, the results do not change qualitatively and are available upon request.}

As shown in Table 2, countries with older brides and younger grooms have higher female-to-male labor force participation ratios (column (1)), higher female-to-male life expectancy ratios (column (4)), and higher female-to-male years of education ratios (column (8)), although the latter coefficient is statistically insignificant for men’s SMAM and barely significant for women’s SMAM. These relationships are confirmed by the positive and highly significant effect of the female-to-male SMAM ratio for gender ratios in labor force participation and life expectancy (columns (2) and (5)), as well as the negative and highly significant effect of the male to female difference in SMAM for the same outcomes (columns (3) and (6)). For gender education ratios, the coefficients have the expected sign but are either statistically insignificant (column (9)) or barely significant (column (8)). However, this result is driven by Middle Eastern and North African countries: the MENA region experienced large increases in female education—e.g., in the Gulf States, by allowing women to pursue higher education—without corresponding improvements in labor market participation or ages at first marriage.\footnote{If we exclude the MENA countries for the regression in Table 2, column (9), the effect of male-to-female SMAM difference increases in absolute magnitude by a factor of 1.7 and becomes highly significant: $\hat{\beta}_{w/f, \text{MENA}} = -0.024$, robust s.e. = 0.009, p-value = 0.008. Including the MENA region, but measuring the ratio of female-to-male education in 1990—instead of averaging between 1990 and 2010—also produces a larger coefficient (in absolute terms) than that of column (9): $\hat{\beta}_{1990} = -0.018$, robust s.e. = 0.008, p-value = 0.028.}

Overall, the estimated coefficients of Table 2 have economic relevance. They suggest, for example, that a one-year reduction in the average age difference between the groom and the bride is associated, on average, with a 3.5 percentage point increase in the ratio of female-to-male labor force participation and 0.6 percentage point increase in the ratio of
female-to-male life expectancy years.

Consistent with Hansen et al. (2015), longer histories of agriculture are negatively and significantly correlated with gender equality in labor force participation, health, and education. Ancestral plow use is also negatively correlated with gender equality in labor force participation, which replicates the findings of Alesina et al. (2013), although the coefficients are only statistically significant at the 10 percent level. It is also the case that historical agricultural suitability is positively associated with higher female participation in the labor force, as hypothesized by Hazarika et al. (2015). However, both the plow and agricultural suitability are no significant determinants of gender equality in life expectancy and education. In fact, the plow coefficient has the “wrong” sign on the education regressions (columns (7)-(9)), and the agricultural suitability coefficient has the “wrong” sign on both the health and education regressions. Since, at this stage, we do not use the CW-index as a regressor, we can reproduce the full specification of Alesina et al. (2013), which includes tropical climate in the vector of historical controls. All else being equal, countries with a high share of tropical ancestors perform significantly worse in labor force participation and life expectancy but not significantly worse in education.

The coefficients of income per capita, both linear and the quadratic, are always highly significant. However, their signs imply different relationships between income levels and gender equality depending on the dimension considered. For labor force participation, there is evidence of a U-shaped relationship consistent with the feminization-U hypothesis (Goldin, 1994). For the health and education dimensions, in contrast, there is an inverted-U shaped relationship between income and gender equality, suggesting decreasing marginal returns to income.38

37The turning point (i.e., the minimum of the U curve) implied by the estimates on column (1) is at 15,679 per capita PPP-$. Whereas the feminization U-hypothesis holds for cross-sections of countries, its empirical relevance has been challenged in panel data analyses (see Gaddis and Klasen, 2014).
38For health, the relationship between income and the gender life expectancy ratio turns negative at a relatively low income level of 3,924 per capita PPP-$. This is likely related to the fact that in high income countries, the relative survival advantage of females falls, due to falling relative importance of a biological survival advantage of females in infancy and old age, and also due to greater similarity in economic activity and behavior. For years of education, the turning point occurs at a much higher per capita level of 19,765 PPP-$ (using estimates from columns (4) and (7), respectively).
Furthermore, higher SMAM for women (and lower SMAM for men) positively and significantly correlates with alternative measures of gender equality previously used in the literature such as the share of firms with some degree of female ownership, the share of parliament seats held by women, and the UNDP’s Gender Development Index, as shown in Table A2.

We explore the sensitivity of these results to subsample analyses (Table 3). Excluding Sub-Saharan Africa (Panel A), the Americas and Oceania, i.e., the New World (Panel B), or Europe (Panel C) does not affect the overall finding that higher ages at first marriage for women and lower ages at first marriage for men are positive and significant correlates of gender equality in labor force participation and life expectancy, although insignificant for gender equality in years of education. However, when the estimation is done for a sample of Old World countries, the SMAM coefficients become statistically significant for the education outcomes (Panel B: columns (7)-(9), see also footnote 36). A relevant finding, from the subsample analyses, is that both the effect of ancestral plow and agricultural suitability on labor force participation vanish once Sub-Saharan Africa is excluded (Panel A: columns (1)-(3)). This is not surprising, given that Sub-Saharan Africa is the signature non-plow region in the world (Baumann, 1928; Boserup, 1970). Not only are both coefficients statistically indistinguishable from zero but the plow coefficient even has the “wrong” positive sign. At the same time, the size of the SMAM effects is larger without Sub-Saharan African countries; for the male-female SMAM difference, for example, the coefficient is almost twice as large as in the full world sample (c.f. column (3) of Table 2).

5.2 Cool Water Breeds Late-marriage Societies

Having shown that ages at first marriage are indeed important factors for gender equality, broadly defined, we now test if the CW-condition is a relevant determinant of gender differences in ages at first marriage. We estimate the baseline specification (equation (1))
with the alternative SMAM variables on the left hand side and include the CW-index as a new explanatory variable.

Table 4 shows the results. As hypothesized, the CW-index has a positive and significant effect on female SMAM, the ratio of female-to-male SMAM and a negative effect on the difference between male and female SMAM. These effects do not disappear once the other deep determinants are included. In fact, the CW-impact on the gender differences becomes larger in absolute terms. The estimates in column (8), for example, imply that a one standard deviation increase in the CW-index is associated with a 10 months reduction on the average gap between male and female ages at first marriage.\(^{39}\) This is a sizable effect: 10 months corresponds to roughly 20 percent of the world’s average gender gap in ages at first marriage of 4.12 years in the period considered (see Table 1). In contrast, none of the other deep determinants—whether years of agriculture, historical plow use, or historical agricultural suitability—are significant at the 5 percent level, once the CW-index is included. Interestingly, the ages at first marriage for women and men increase with per capita income (averaged over the period 1960-1980), following an inverted U-shaped function that peaks around 13,000-13,500 PPP$. But there is no evidence that women’s SMAM approaches men’s as countries get richer, since the income coefficients for the female-male age ratio or the male-female age difference are not statistically significant. The coefficients for the year of the SMAM observation tell a similar story: while ages at first marriage have increased over time for both women and men (columns (2) and (4), respectively), the time trends for the ratio or differences between the sexes are not statistically significant. These results suggest that while marital ages do respond to economic development and follow global trends they do so similarly for both sexes, thus leaving ratios and differences untouched. Over time, as income levels rise, there is no evidence of convergence between female and male ages at first marriage, which supports the view that persistent, deep-rooted patterns dominate this relationship.\(^{40}\)

\(^{39}\hat{\beta}_{cw} \ast \sigma_{cw} = -5.902 \ast 0.145 \approx -0.856 \text{ years (} \approx -10.27 \text{ months).}\)

\(^{40}\)In table A3, we “unpack” the CW index by replacing it in the regressions with its raw variables. Absolute latitude and summer mildness correlate negative and significantly with the male-female age gap at first marriage. The coefficient for continuous rain is also negative but not significant at conventional levels. In column (7), we show that both factor scores, coolness and water, have large, negative, significant
The results hold for the usual three subsamples: without Sub-Saharan Africa, without the New World, and without Europe, as shown in Table 5.

We have thus far a negative correlation between the CW condition and gender gaps in ages at first marriage in the postwar period. Our interpretation is however that this present day correlation emerges from the effect of geo-climatic conditions on *pre-industrial* marriage patterns. Over time, these marriage patterns became embedded in both formal and informal institutions, thereby persisting until today. Although we cannot empirically exclude that the CW condition has a direct contemporary effect of ages at first marriage, we can ask whether the CW effect is mainly tied to a geographical area *as such* or to its ancestral inhabitants (Putterman and Weil, 2010). Hansen et al. (2015) show that the negative effect of longer histories of agriculture on gender equality becomes stronger after weighing their variable on the timing of the Neolithic revolution with post-1500 migration flows from Putterman and Weil (2010). In the same spirit, we create an alternative version of the CW index by weighing it with Putterman and Weil’s World Migration Matrix data. This “ancestry-adjustment” strengthens the CW effect (see Table A4 for point estimates), suggesting that the historical CW condition of a population matters more than the CW condition of its present-day place of residency. This is consistent with our hypothesis that the results reveal the long-run persistence of a pre-industrial relationship, rather than a contemporary one, between a society’s geo-climatic configuration and its household formation patterns. However, adjusting the CW index in this way is problematic if the migration flows are endogenous to marriage patterns, as in the case where areas with favorable CW conditions were to attract immigrants with strong preferences for late marriage patterns of household formation. Indeed, Northwestern Europeans have largely
settled in the regions of the New World with the highest score of the CW index.41 The unadjusted CW measure is free from this specific source of endogeneity bias. Thus, even though the estimated effects are stronger with the ancestry-adjustment, we decide, as a matter of caution, to present the remaining results without this adjustment.

It is important to note that if, by construction, the CW index would uniquely fit the geo-climatic features of Northwest Europe and its New World colonies, then it would necessarily be also correlated with all the unobservable factors that might explain its (potentially) unique pre-industrial late marriage pattern. If this were the case, our results would be completely spurious. It is therefore essential to refute this possibility. First, we use a data-driven approach (factor analysis) for the construction of the CW index in order to minimize the concern that the world distribution of this variable results from \textit{ad hoc} measurement assumptions. Second, we show that our results are not dependent on Northwest Europe or Western offshoots. Both including dummy variables for these groups of countries or excluding them altogether from the estimation sample does not affect the main result: a highly significant and negative effect of the CW index, only slightly weaker in magnitude (Table A5).42 In other words, the association of the CW index with ages at first marriage is not a spurious idiosyncrasy of Northwest Europe and its offshoots, but a broader relationship that holds for the rest of the globe.

The inclusion of further control variables does not affect the relationship between the CW-index and the average age gap between groom and bride. We start by including tropical climate in column (2) of Table 6, since it could be that the relevant variation captured by the CW-index is that between tropical and non-tropical countries. The results show otherwise; the coefficient for CW remains negative and highly significant, whereas the tropical climate variable is statistically indistinguishable from zero. This demonstrates that the CW-index is more than just an inverse measure of tropical temperatures. What

41The correlation coefficient of the CW indexes adjusting or not for post-1500 migration is 0.96. For comparison, the correlation between the adjusted and unadjusted years of agriculture variable used by Hansen et al. (2015) is 0.85.

42Northwestern Europe includes: Belgium, Denmark, France, Germany, Iceland, Ireland, Netherlands, Norway, Sweden, and the United Kingdom. Excluding France from this list has no impact on the results. Western offshoots are Australia, Canada, New Zealand, and the United States.
distinguishes it from such an inverse measure is that it gives a premium not just on high latitude but more specifically on high latitude with minimized seasonal extremity. Another distinction is the steady rain component, which on the one hand only exists in high latitudes but on the other hand by far not in all of them: continental climates with seasonal extremes are dry in their hot summers.

Another possible source of error is that the CW-index captures the fact that European colonizers by and large settled in all the major CW-areas outside Europe, with the exception of Japan and the Korean peninsula. Thus, it could simply be that settlers from late marriage European societies “exported” the late marriage pattern to their overseas offshoots. Even though the subsample analyses of Tables 5 and A5 do not support this argument, we provide a more rigorous test by including the weighted genetic distance between each country and the United Kingdom from Spolaore and Wacziarg (2009). If, the CW-index was indeed a mere proxy for areas of European settlement around the world, we would expect the relationship between CW and ages at first marriage to vanish once the genetic distance from Western Europe is held constant. However, as seen in column (3), the coefficient of CW remains negative, statistically significant, and, if anything, the effect becomes stronger. On column (4), we go beyond controlling for contemporary income difference across countries and also control for pre-industrial differences in the level of development. Following the literature, we use population density in 1500 as a proxy for development in the Malthusian era (e.g., Spolaore and Wacziarg, 2013, footnote 3). But the CW-effect does not change.

Alternatively, it could be the case that per capita income levels do not reasonably proxy other developmental dimensions that might be driving the correlation between the CW-index and ages at first marriage. In particular, education levels and formal institutions are plausible candidates for such “omitted” factors. More educated individuals marry later, and better formal institutions could be stronger at enforcing minimum-marital-ages legislation, or recognizing individual consent as the basis for a lawful marriage. In columns

\footnote{The weighted genetic distance is the expected value of the genetic distance between two randomly picked individuals for each pair of countries. See more details in Spolaore and Wacziarg (2009).}
(5)-(6) we include, respectively, the mean years of education in 1950 for the total population and by gender; in columns (7)-(8), we include, respectively, the polity2 score in 1980 as a measure of democracy and the World Bank’s rule of law variable in 2000 (Kaufmann et al., 2011) as a measure of institutional quality. The CW coefficient remains negative and significant, and of comparable magnitude throughout.

Religion poses a particular challenge. While certain authors regard religion as a crucial determinant of gender inequality (e.g., Fish, 2002; Inglehart and Norris, 2003; Lagerlöf, 2003; Carmichael, 2011), others have argued that religion is endogenous to pre-existing factors. As such, religion would be a “bad control” to include since it would shut down important transmission mechanisms from the deep determinants to the outcome of interest. Boserup (1970) recognized this problem in her original plow vs. shifting agriculture argument. In particular, she claims that the use of the veil or the burqa was a direct consequence of female domestic seclusion due to plow agriculture; it only afterwards has been incorporated in the religious practices of those societies. Being a consequence of the plow, religion would mistakenly absorb much of the plow’s gender-inegalitarian effect in any regression of gendered outcomes. Alesina et al. (2013) find indeed that including religion reduces the effect of the plow by 20 percent. Similarly, Protestantism correlates highly with the CW-condition but it is clear that this relationship does not exist because Protestantism produced the CW-condition. More plausibly, the individualistic-meritocratic spirit of Protestantism resonated with people’s mindsets where the CW-condition already had encultured a pre-disposition to this spirit (Welzel, 2013, 2014). Thus, Protestantism would wrongly absorb any effect of the CW-condition in a regression of outcomes related to this condition.

In general, this strand of argument claims that emerging religions absorbed, incorporated and codified many pre-existing local practices and beliefs, rather than having introduced them. Hartman (2004) argues that, in medieval Europe, the Catholic doctrine of individual consent being a sufficient condition for the validity of marriage was widely followed in the Northwestern societies but rarely so in (deeply Catholic) Italy, Spain, and Southern France. Similarly, Hansen et al. (2015, p. 378) and Hazarika et al. (2015, pp.
19-20) discuss how pre-existing gender norms influenced early Islamic doctrine.

Despite the controversy on whether religion is a “bad-control”, we include the population shares of Catholics, Protestants, and Muslims in 1980 (with other religions as the reference group). The CW effect is still negative and statistically significant (column (9)) but, as expected, about 32 percent smaller in magnitude. Relative to other religious groups, higher shares of Catholics and Protestants are associated with smaller age gaps between the spouses, whereas a larger share of Muslims in the population correlates with a wider age gap between husband and wife at first marriage.

Finally, we add a country’s per capita oil production in 2000 as a control to capture Ross’s (2008) argument that high oil endowments crowd-out women from the labor force. The low employment prospects and, consequently, low returns to education for women incentivize early female ages at first marriage. Indeed, per capita oil production is positively correlated with larger age gaps between the groom and the bride, albeit its coefficient is insignificant. In any case, the CW effect remains unchanged by the inclusion of this additional control (column (10)).

Even when we include all the additional controls simultaneously in column (11), the negative correlation between the CW-index and the male-to-female difference in age at first marriage remains significant at the 5 percent level. We estimate how large the effect of unobservables needs to be compared with the effect of observables in order to explain away the CW effect (Altonji et al., 2005; Bellows and Miguel, 2009; Nunn and Wantchekon, 2011). By comparing the most unrestricted model—a regression of the male to female SMAM difference on the CW index and a constant to the most restricted model of Table 6, column (11), the effect of unobservables would have to be 2.38 times greater than the effect of the observable variables of column (11), which seems indeed extremely unlikely.45

In addition to the regressions of Table 6, we perform further robustness checks and

\[\hat{\beta}_{cw} \approx -6.913; \text{with robust standard error of } 0.814. \]

\[\frac{-4.870}{-6.913} \approx 2.38, \text{ where } -4.870 \text{ is the CW coefficient from the restricted model of Table 6, column (11) and } -6.913 \text{ is the CW coefficient of the unrestricted model (see previous footnote).} \]
present the results in Table A6 of the Online Appendix. As additional historical controls, we include a measure for the pre-industrial intensity of agriculture and the proportion of ancestral subsistence provided by animal husbandry (taken from Alesina et al., 2013)46 to account for the possibility that animal husbandry delays ages at marriage for women (Voigtländer and Voth, 2013). We also add the proportion of ancestral subsistence provided by hunting since hunter-gatherer societies display higher levels of gender equality (Dyble et al., 2015). To test the idea that male dominance over women derives from the emergence of private property (Engels, 1902), we also include the share of ancestors from ethnicities where land inheritance rules were absent. Furthermore, as additional contemporary controls, we include two warfare variables: both the number of years of civil and inter-state conflict for each country from 1816 until 2007 and the terrain ruggedness index from Nunn and Puga (2012). The latter is included because flatter regions are easier to invade but also easier to irrigate and plow than rugged terrain and may also experience less rainfall than mountainous regions. War could either be detrimental for women if it reinforces gender violence and patriarchy in society, but it could also have positive effects if women are called to replace men in the labor force (Whyte, 1978), thus, postponing marriage. A more direct effect is the reduced supply of young men in the marriage market in times of war leading to later marital ages or higher proportions of never married women. To complement the genetic distance variable and the World Migration Matrix in measuring post-1500 global migratory flows, we add the share of a country’s population (in 2000) that is of Western European descent. We also include a communist dummy since communist regimes had explicit policies to promote gender equality and, in some cases, fought traditional marriage practices such as arranged marriages, or child marriages. Finally, we add the share of GDP accruing to agriculture, manufacturing, or services in 2000 since labor demand in female-dominated sectors will likely impact female marital ages (e.g., Ross, 2008).

Controlling for these additional variables, both in a stepwise manner or simultaneously, does not affect our main result: the CW coefficient is always statistically significant at

46Unless otherwise noted, all additional variables included are from Alesina et al. (2013). For the original source and construction method see their Online Appendix. We would like thank the authors for making their dataset publicly available.
least at the 5 percent level and its size ranges from -5.206 to -6.296 (Table A6).47

Overall, after controlling for myriad of additional variables, we confirm our baseline finding that countries with a stronger CW-condition have systematically lower age gaps at first marriage between spouses, i.e., they are more likely to be late-marriage societies.

5.3 Cool Water and Historic Late Marriages

We now turn to Europe to show that the relationship between the CW-condition and ages at first marriage is deep rooted in history. In so doing we focus on a much more homogeneous sample: both marriage age as well as the CW-condition are more similar within Europe than between Europe and other parts of the world. Given this much lower variation, it will be \textit{harder} to find significant relationships within this more homogeneous group. 47Dennison and Ogilvie (2014) compiled and harmonized historical data for the period 1500-1900 on female ages at first marriage, which we use as the dependent variable for the regressions of Table 7. The CW-index is a positive determinant of female marital ages. Despite the much reduced variability, the CW coefficient continues to be statistically significant in all specifications, except when years of agriculture are included in columns (3) and (4). In those specifications, the standard errors of the CW-index jump upward due to multicollinearity between the CW-index and the timing of the Neolithic revolution ($r \approx -0.70$) for this subsample of European countries. Vice versa, and in accordance with this finding, years of agriculture as well is insignificant under control of CW: within Europe, the two variables become almost indistinguishable and, hence, absorb each other. However, the size of the CW effect is not much affected, only its standard error. In columns (5) and (6), the plow variable is insignificant which, given that all countries included (except Iceland) were traditional plow societies, is not surprising.48 Agricultural suitability is highly significant in column (8) but its negative sign runs against the positive effect of historical resource abundance on gender egalitarian norms posited by Hazarika et al.

47Reestimating the specifications of Tables 5 and 6 using ancestry-adjusted CW index and years of agriculture produces even stronger CW effects, which are always highly statistically significant. Results available upon request.

48In other words, this sample of European countries, for which historical marital ages are available, removes any potential “plow effect” by virtue of almost exclusively containing plow societies.
Importantly, once again the results are not a statistical artifact driven by more developed areas being located in CW regions: as shown in the even-numbered columns of Table 7, the CW effect is robust to the inclusion of population density in 1500 as a proxy for pre-industrial development. While it is true that societies with higher population densities had, on average, older brides at first marriage, controlling for this actually increases the estimates of the CW variable. This result is not entirely surprising given that most societies with extremely high CW scores—e.g., Iceland, Sweden, Norway, and Denmark—had relatively lower population densities and were not among the most wealthy and developed nations of Europe in this period (see also Dennison and Ogilvie, 2014).

Moreover, the positive and significant relationship between the CW-index and historical female ages at first marriage holds for a nineteenth century sample of both European and non-European countries, using data from Gapminder (Table A7). In this setting, the CW-effect retains significance, even taking the timing of the Neolithic Revolution into account.49

5.4 Cool Water and Contemporary Gender Equality

We have shown that CW-index is associated with smaller male-to-female differences in ages at first marriage which, in turn, are positively correlated with contemporary female-to-male ratios in the labor force participation and life expectancy.

Now, we estimate the reduced-form impact of the CW-index on those present day measures of gender equality. The reduced-form coefficient of the CW-index will be a composite of the effect of CW operating through reduced sex differences in marital ages plus all the other potential transmission channels that are not controlled for in our regression setup.

49Once again, the results are robust to ancestry-adjusting the CW index and years of agriculture.
The results, displayed in Table 8, suggest that the reduced-form effect of the CW-index on the female-male labor force participation ratio (Panel A) is positive and robust in terms of statistical significance to the inclusion of other deep determinants. One standard deviation increase in the CW index is associated with a 0.34 standard deviations increase in the female to male labor force participation ratio (averaged over 1990-2010, using the point estimates from column (8)).

The CW-index is also a significant positive correlate of contemporary female-male ratio in life expectancy (Table 8, Panel B). One standard deviation increase in the CW index is associated with a 0.26 standard deviations increase in the female to male life expectancy ratio (averaged over 1990-2010, using the point estimates from column (8)).

Finally, consistent with the lack of correlation between ages at first marriage and the gender ratio in years of education, the reduced-form coefficient of the CW-index is small and statistically insignificant (Table 8, Panel C). The only robust negative deep determinant of gender equality in education is years of agriculture.

6 Conclusion

Reviewing the burgeoning literature on the remote historic drivers of gender inequality, we presented evidence for an overlooked trajectory that (1) originates in the CW-condition, from where the path leads to (2) late female marriages in pre-industrial times, which eventually pave the way towards (3) various gender egalitarian outcomes today.

In theorizing this evidence, we argue that the CW-condition embodies opportunity endowments that significantly reduced fertility pressures on women, which favored late female marriages in the pre-industrial era. The resulting family and household patterns placed women into a better position to struggle for more gender equality during subsequent economic transitions toward the industrial and post-industrial stages of development. Hence, enduring territorial differences in the CW-condition explain differences in pre-industrial female marriage ages, which in turn explain differences in gender equality
This “seed theory of female emancipation” is compatible with and actually integrates half a dozen separately developed theories on the historic origins of gender (in)equality. First, the argument that scarcity in arable land favored historic gender inequality is incorporated in the seed theory because the CW-condition explains the absence of such scarcity. Second, the argument that irrigation dependence favored historic gender inequality is incorporated in the seed theory because the CW-condition explains the absence of such dependence. Third, the argument that disease prevalence favored historic gender inequality is incorporated in the seed theory because the CW-condition explains the absence of such prevalence. Fourth, the fact that a longer lasting agrarian legacy explains preferences for obedience only until a certain temporal threshold is explained by the seed theory because this threshold is located at the time when the CW-areas in Northwestern Europe adopted agriculture. Fifth, the argument that European descent favored historic gender equality is incorporated in our seed theory because European descent is linked to historic gender equality only in CW-areas but not outside them. In conclusion, we suggest that our seed theory of female emancipation provides a credible umbrella in unifying previous theories of gender equality.
References

World Bank, 2016. World development indicators. [accessed on 24-09-2016].
Figures and Tables

Figure 1: Service prevalence by age and sex for selected Northwest European countries. Source: Hajnal (1982): Tables 13, 14, and 17.

Figure 2: Linear correlation between historical and contemporary female SMAM for 28 European countries: controlling for the year of observation of contemporary female SMAM, 1966-2002. Sources: Historical data from Dennison and Ogilvie (2014, Table 2); contemporary data from UN (2009).
Table 1: Descriptive statistics for selected variables

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>(Std. Dev.)</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average female-male ratio in 1990-2010:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor force participation</td>
<td>0.68</td>
<td>(0.21)</td>
<td>0.15</td>
<td>1.01</td>
<td>191</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>1.07</td>
<td>(0.04)</td>
<td>0.99</td>
<td>1.21</td>
<td>202</td>
</tr>
<tr>
<td>Years of education</td>
<td>0.82</td>
<td>(0.22)</td>
<td>0.21</td>
<td>1.41</td>
<td>146</td>
</tr>
<tr>
<td>Ages at first marriage:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contemporary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>21.96</td>
<td>(2.88)</td>
<td>15.56</td>
<td>32.19</td>
<td>214</td>
</tr>
<tr>
<td>Year of obs.</td>
<td>1975.97</td>
<td>(9.26)</td>
<td>1960</td>
<td>2006</td>
<td>214</td>
</tr>
<tr>
<td>Male</td>
<td>26.13</td>
<td>(2.28)</td>
<td>21.13</td>
<td>34.49</td>
<td>209</td>
</tr>
<tr>
<td>Female/male</td>
<td>0.84</td>
<td>(0.07)</td>
<td>0.64</td>
<td>0.98</td>
<td>209</td>
</tr>
<tr>
<td>Male−female</td>
<td>4.12</td>
<td>(1.76)</td>
<td>0.5</td>
<td>9.93</td>
<td>209</td>
</tr>
<tr>
<td>Historical (Europe only, ref. = England)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-2.07</td>
<td>(3.1)</td>
<td>-6.81</td>
<td>2.36</td>
<td>28</td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td>0.48</td>
<td>(0.15)</td>
<td>0.21</td>
<td>0.83</td>
<td>183</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>4.31</td>
<td>(2.42)</td>
<td>0</td>
<td>10</td>
<td>165</td>
</tr>
<tr>
<td>Plow</td>
<td>0.48</td>
<td>(0.48)</td>
<td>0</td>
<td>1</td>
<td>227</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.54</td>
<td>(0.33)</td>
<td>0</td>
<td>0.98</td>
<td>214</td>
</tr>
</tbody>
</table>

Sources: See accompanying text.

Figure 3: CW-condition and the male-female difference in singulate mean age at first marriage from UN (2009). Period is 1960-2006. For each country first year available is shown.
Figure 4: Europe: CW-condition and the male-female difference in singulate mean age at first marriage from UN (2009). Period is 1960-2003. For each country first year available is shown. Bivariate regression: coef. = −4.14; robust s.e. = 1.64; $R^2 = 0.19; N = 35$.

Figure 5: Asia: CW-condition and the male-female difference in singulate mean age at first marriage from UN (2009). Period is 1961-2005. For each country first year available is shown. Bivariate regression: coef. = −6.37; robust s.e. = 2.36; $R^2 = 0.12; N = 44$.

53
Figure 6: Africa: CW-condition and the male-female difference in singulate mean age at first marriage from UN (2009). Period is 1960-2006. For each country first year available is shown. Bivariate regression: coef. = -5.67; robust s.e. = 3.67; $R^2 = 0.06$; $N = 48$.

Figure 7: New World: CW-condition and the male-female difference in singulate mean age at first marriage from UN (2009). Period is 1960-1999. For each country first year available is shown. Bivariate regression: coef. = -3.6; robust s.e. = 1.22; $R^2 = 0.11$; $N = 46$.
Table 2: Determinants of gender gaps: ages at first marriage

<table>
<thead>
<tr>
<th></th>
<th>Labor force participation</th>
<th>Life expectancy</th>
<th>Years of education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Ages at first marriage:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.037***</td>
<td>0.006***</td>
<td>0.017*</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.002)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Male</td>
<td>-0.032***</td>
<td>-0.006***</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.002)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Female/male</td>
<td>1.014***</td>
<td>0.164***</td>
<td>0.425*</td>
</tr>
<tr>
<td></td>
<td>(0.269)</td>
<td>(0.043)</td>
<td>(0.245)</td>
</tr>
<tr>
<td>Male–female</td>
<td>-0.035***</td>
<td>-0.066***</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.002)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Year of obs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.000)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.041***</td>
<td>-0.044***</td>
<td>-0.047**</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Plow</td>
<td>-0.096*</td>
<td>-0.095*</td>
<td>-0.099*</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.052)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.115**</td>
<td>0.118**</td>
<td>0.118**</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.053)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Historical controls:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large animals</td>
<td>0.018</td>
<td>0.015</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.083)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Political hierarchies</td>
<td>-0.005</td>
<td>-0.006</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.020)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Economic complexity</td>
<td>0.012</td>
<td>0.012</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Tropical climate</td>
<td>-0.145***</td>
<td>-0.140***</td>
<td>-0.139***</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.047)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Contemporary controls:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income per capita (log)</td>
<td>-0.547***</td>
<td>-0.557***</td>
<td>-0.527***</td>
</tr>
<tr>
<td></td>
<td>(0.0159)</td>
<td>(0.158)</td>
<td>(0.160)</td>
</tr>
<tr>
<td>(Income per capita (log))^2</td>
<td>0.028***</td>
<td>0.029***</td>
<td>0.027***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Continent dummies:</td>
<td>(Ref. = Africa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>0.133*</td>
<td>0.132*</td>
<td>0.132*</td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.068)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Europe</td>
<td>0.184***</td>
<td>0.184**</td>
<td>0.180**</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.081)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>North America</td>
<td>-0.102</td>
<td>-0.101*</td>
<td>-0.103*</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.061)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>Oceania</td>
<td>0.009</td>
<td>-0.001</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>South America</td>
<td>0.020</td>
<td>0.017</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.072)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.994</td>
<td>7.373</td>
<td>7.190</td>
</tr>
<tr>
<td></td>
<td>(5.155)</td>
<td>(4.870)</td>
<td>(4.946)</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. "Ages at first marriage" are single mean years at first marriage (SMAM) from UN (2009) for the period 1960-1990. For each country, earliest year available is selected. "Years of agriculture" is the number of years (in thousands) since the Neolithic revolution (from 1500) from Putterman and Trauner (2006). "Plow" is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). "Agricultural suitability" and Historical controls are from Alesina et al. (2013). The natural log of per capita income and its square are measured in the same time period as the dependent variable. *p < 0.1, **p < 0.05, ***p < 0.01.
Table 3: Determinants of gender gaps: ages at first marriage; subsample analysis.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor force participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages at first marriage:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.069***</td>
<td>0.066*</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-0.064***</td>
<td>-0.068**</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female/male</td>
<td>1.751***</td>
<td>0.159**</td>
<td>0.138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of obs.</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.037***</td>
<td>-0.038***</td>
<td>-0.006***</td>
<td>-0.005***</td>
<td>-0.014*</td>
<td>-0.015*</td>
<td>-0.015*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plow</td>
<td>0.062</td>
<td>0.061</td>
<td>0.000</td>
<td>0.005</td>
<td>0.016</td>
<td>0.003</td>
<td>-0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.042</td>
<td>0.050</td>
<td>0.013</td>
<td>0.008</td>
<td>0.016</td>
<td>0.003</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.962</td>
<td>5.227</td>
<td>-0.950</td>
<td>-0.674</td>
<td>-0.624</td>
<td>-0.055</td>
<td>-0.047</td>
<td>-0.045</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>97</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>90</td>
<td>605</td>
<td>-0.045</td>
<td>-0.045</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.699</td>
<td>0.698</td>
<td>0.698</td>
<td>0.559</td>
<td>0.550</td>
<td>0.551</td>
<td>0.605</td>
<td>0.593</td>
<td>0.592</td>
</tr>
<tr>
<td>adj.R^2</td>
<td>0.634</td>
<td>0.638</td>
<td>0.637</td>
<td>0.466</td>
<td>0.461</td>
<td>0.462</td>
<td>0.512</td>
<td>0.504</td>
<td>0.502</td>
</tr>
<tr>
<td>Life expectancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages at first marriage:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.041***</td>
<td>0.007***</td>
<td>0.024**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-0.035***</td>
<td>-0.008**</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female/male</td>
<td>1.131***</td>
<td>0.195**</td>
<td>0.554**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of obs.</td>
<td>-0.002</td>
<td>-0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.009***</td>
<td>-0.007***</td>
<td>-0.009**</td>
<td>-0.004**</td>
<td>-0.018</td>
<td>-0.014</td>
<td>-0.013</td>
<td>-0.013</td>
<td></td>
</tr>
<tr>
<td>Plow</td>
<td>-0.129</td>
<td>-0.121</td>
<td>-0.013</td>
<td>-0.012</td>
<td>0.013</td>
<td>0.019</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.097</td>
<td>0.096</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.044</td>
<td>-0.055</td>
<td>-0.059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>6.942</td>
<td>6.405</td>
<td>-0.566</td>
<td>-0.553</td>
<td>4.456</td>
<td>2.431</td>
<td>2.344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.593</td>
<td>0.593</td>
<td>0.635</td>
<td>0.638</td>
<td>0.634</td>
<td>0.622</td>
<td>0.616</td>
<td>0.612</td>
<td></td>
</tr>
<tr>
<td>adj.R^2</td>
<td>0.530</td>
<td>0.543</td>
<td>0.534</td>
<td>0.578</td>
<td>0.547</td>
<td>0.582</td>
<td>0.555</td>
<td>0.554</td>
<td>0.549</td>
</tr>
<tr>
<td>Years of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages at first marriage:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.033***</td>
<td>0.007***</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-0.028**</td>
<td>-0.005**</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female/male</td>
<td>0.504**</td>
<td>0.188**</td>
<td>0.349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of obs.</td>
<td>-0.003</td>
<td>-0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.045***</td>
<td>-0.045***</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.005</td>
<td>-0.000</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plow</td>
<td>-0.107</td>
<td>-0.106</td>
<td>-0.013</td>
<td>-0.012</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.131**</td>
<td>0.135**</td>
<td>-0.004</td>
<td>-0.003</td>
<td>-0.014</td>
<td>-0.014</td>
<td>-0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>9.186</td>
<td>8.466</td>
<td>0.472</td>
<td>0.432</td>
<td>8.644</td>
<td>7.044</td>
<td>6.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>101</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.509</td>
<td>0.509</td>
<td>0.515</td>
<td>0.420</td>
<td>0.438</td>
<td>0.423</td>
<td>0.538</td>
<td>0.536</td>
<td></td>
</tr>
<tr>
<td>adj.R^2</td>
<td>0.564</td>
<td>0.564</td>
<td>0.564</td>
<td>0.564</td>
<td>0.564</td>
<td>0.564</td>
<td>0.564</td>
<td>0.564</td>
<td></td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. All regressions include the same set of historical and contemporary controls as in Table 2. Historical controls are: ancestral domestication of large animals, ancestral settlement patterns, ancestral political complexity, and fraction TI ancestral land that was tropical or subtropical from Alesina et al. (2013). Contemporary controls are the natural log of per capita income and its square, measured in the same time period as the dependent variable. Continent dummies are included. Panel B: Old World shows results of regressions in which all countries from the Americas and Oceania (i.e., the New World) are excluded. *p < 0.10, **p < 0.05, ***p < 0.01.
<table>
<thead>
<tr>
<th>Deep determinants:</th>
<th>Female</th>
<th>Male</th>
<th>Female/male</th>
<th>Male–female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool water</td>
<td>6.727*** (2.546)</td>
<td>4.316* (2.494)</td>
<td>1.949 (2.423)</td>
<td>-1.555 (2.402)</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.313*** (0.147)</td>
<td>-0.159 (0.112)</td>
<td>-0.007** (0.046)</td>
<td>-1.555 (0.026)</td>
</tr>
<tr>
<td>Plow</td>
<td>-1.105 (1.025)</td>
<td>-0.253 (0.860)</td>
<td>-0.034 (0.068)</td>
<td>0.890 (0.026)</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.310 (0.906)</td>
<td>0.728 (0.824)</td>
<td>-0.019 (0.024)</td>
<td>0.523 (0.024)</td>
</tr>
<tr>
<td>Historical controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large animals</td>
<td>1.074 (1.211)</td>
<td>0.731 (1.363)</td>
<td>0.694 (1.035)</td>
<td>0.336 (1.096)</td>
</tr>
<tr>
<td>Political hierarchies</td>
<td>0.658*** (0.245)</td>
<td>0.753*** (0.295)</td>
<td>0.329 (0.203)</td>
<td>0.254 (0.259)</td>
</tr>
<tr>
<td>Economic complexity</td>
<td>-0.242 (0.156)</td>
<td>-0.061 (0.121)</td>
<td>-0.030 (0.106)</td>
<td>0.064 (0.110)</td>
</tr>
<tr>
<td>Contemporary controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income per capita (log)</td>
<td>5.726** (2.369)</td>
<td>6.092*** (2.113)</td>
<td>6.471*** (1.961)</td>
<td>6.642*** (1.807)</td>
</tr>
<tr>
<td>(Income per capita (log))^2</td>
<td>-0.307*** (0.137)</td>
<td>-0.321*** (0.119)</td>
<td>-0.350*** (0.115)</td>
<td>-0.349*** (0.102)</td>
</tr>
<tr>
<td>Year of SMAM obs.</td>
<td>0.080*** (0.022)</td>
<td>0.059*** (0.022)</td>
<td>0.061*** (0.020)</td>
<td>0.059** (0.021)</td>
</tr>
<tr>
<td>Constant</td>
<td>-166.965*** (46.198)</td>
<td>-126.697*** (46.890)</td>
<td>-125.611*** (41.964)</td>
<td>-103.995** (43.682)</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. "Singulate mean age at first marriage" data are from UN (2009) for the period 1960-2006. For each country, earliest year available is selected and controlled for with variable "Year of SMAM obs." "Cool water" is the cool water index described in Section 3. "Years of agriculture" is the number of years (in thousands) since the Neolithic revolution (from 1500) from Putterman and Trainor (2006). "Plow" is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). "Agricultural suitability" and Historical controls are from Alesina et al. (2013). The natural log of per capita income and its square are averaged over the period 1960-1980. * p < 0.10, ** p < 0.05, *** p < 0.01.
Table 5: Determinants of ages at first marriage: subsample analysis

<table>
<thead>
<tr>
<th>Deep determinants:</th>
<th>Female</th>
<th>Male</th>
<th>Female/male</th>
<th>Male–female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Cool water</td>
<td>5.489*</td>
<td>3.786</td>
<td>-1.140</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(1.123)</td>
<td>(2.934)</td>
<td>(2.633)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.263</td>
<td>-0.167</td>
<td>-0.004</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.164)</td>
<td>(0.135)</td>
<td>(0.084)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Plow</td>
<td>1.683</td>
<td>2.023*</td>
<td>-0.005</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>(1.416)</td>
<td>(1.201)</td>
<td>(0.027)</td>
<td>(0.634)</td>
</tr>
</tbody>
</table>

Panel A: without Sub-Saharan Africa

<table>
<thead>
<tr>
<th>N</th>
<th>96</th>
<th>85</th>
<th>95</th>
<th>84</th>
<th>95</th>
<th>84</th>
<th>95</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.418</td>
<td>0.406</td>
<td>0.370</td>
<td>0.338</td>
<td>0.344</td>
<td>0.374</td>
<td>0.308</td>
<td>0.355</td>
</tr>
<tr>
<td>adj. R²</td>
<td>0.333</td>
<td>0.277</td>
<td>0.278</td>
<td>0.192</td>
<td>0.248</td>
<td>0.236</td>
<td>0.206</td>
<td>0.213</td>
</tr>
</tbody>
</table>

Panel B: Old World

<table>
<thead>
<tr>
<th>Deep determinants:</th>
<th>Female</th>
<th>Male</th>
<th>Female/male</th>
<th>Male–female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Cool water</td>
<td>7.409***</td>
<td>4.348*</td>
<td>-1.308</td>
<td>0.213***</td>
</tr>
<tr>
<td></td>
<td>(2.535)</td>
<td>(2.279)</td>
<td>(2.262)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.304**</td>
<td>-0.128</td>
<td>-0.007**</td>
<td>0.172*</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.720)</td>
<td>(0.032)</td>
<td>(0.832)</td>
</tr>
<tr>
<td>Plow</td>
<td>0.900</td>
<td>1.452**</td>
<td>-0.023</td>
<td>0.771</td>
</tr>
<tr>
<td></td>
<td>(0.867)</td>
<td>(0.713)</td>
<td>(0.029)</td>
<td>(0.784)</td>
</tr>
</tbody>
</table>

Panel B: Old World

<table>
<thead>
<tr>
<th>N</th>
<th>104</th>
<th>100</th>
<th>100</th>
<th>94</th>
<th>100</th>
<th>94</th>
<th>100</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.376</td>
<td>0.458</td>
<td>0.256</td>
<td>0.344</td>
<td>0.438</td>
<td>0.491</td>
<td>0.427</td>
<td>0.478</td>
</tr>
<tr>
<td>adj. R²</td>
<td>0.316</td>
<td>0.382</td>
<td>0.181</td>
<td>0.247</td>
<td>0.382</td>
<td>0.416</td>
<td>0.370</td>
<td>0.401</td>
</tr>
</tbody>
</table>

Panel C: without Europe

<table>
<thead>
<tr>
<th>Deep determinants:</th>
<th>Female</th>
<th>Male</th>
<th>Female/male</th>
<th>Male–female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Cool water</td>
<td>7.553**</td>
<td>5.344*</td>
<td>-1.215</td>
<td>0.195***</td>
</tr>
<tr>
<td></td>
<td>(1.085)</td>
<td>(2.803)</td>
<td>(2.931)</td>
<td>(2.832)</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.356**</td>
<td>-0.204*</td>
<td>-0.007</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.084)</td>
<td>(0.004)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Plow</td>
<td>-1.304</td>
<td>-0.321</td>
<td>-0.040</td>
<td>-0.122</td>
</tr>
<tr>
<td></td>
<td>(0.896)</td>
<td>(0.027)</td>
<td>(0.027)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.199</td>
<td>0.773</td>
<td>-0.026</td>
<td>0.768</td>
</tr>
</tbody>
</table>

Panel C: without Europe

<table>
<thead>
<tr>
<th>N</th>
<th>115</th>
<th>103</th>
<th>111</th>
<th>99</th>
<th>111</th>
<th>99</th>
<th>111</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.461</td>
<td>0.432</td>
<td>0.315</td>
<td>0.264</td>
<td>0.466</td>
<td>0.488</td>
<td>0.436</td>
<td>0.467</td>
</tr>
<tr>
<td>adj. R²</td>
<td>0.403</td>
<td>0.342</td>
<td>0.239</td>
<td>0.141</td>
<td>0.407</td>
<td>0.402</td>
<td>0.373</td>
<td>0.378</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. All regressions include the same set of historical and contemporary controls as in Table 4. Historical controls are: ancestral domestication of large animals, ancestral settlement patterns, ancestral political complexity, and fraction of ancestral land that was tropical or subtropical from Alesina et al. (2013). Contemporary controls are the natural log of per capita income and its square averaged over the period 1960-1980 and the year of the SMAM observation. Continent dummies are included. Panel B: Old World shows results of regressions in which all countries from the Americas and Oceania (i.e., the New World) are excluded. * p < 0.10, ** p < 0.05, *** p < 0.01.
Table 6: Determinants of ages at first marriage: additional controls

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>(2.078)</td>
<td>(2.315)</td>
<td>(2.087)</td>
<td>(2.051)</td>
<td>(2.395)</td>
<td>(2.404)</td>
<td>(2.372)</td>
</tr>
<tr>
<td>Plow</td>
<td>0.514*</td>
<td>0.155**</td>
<td>0.068</td>
<td>0.133</td>
<td>0.095</td>
<td>0.000</td>
<td>0.141</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>(0.092)</td>
<td>(0.093)</td>
<td>(0.109)</td>
<td>(0.094)</td>
<td>(0.099)</td>
<td>(0.105)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>Additional controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical climate</td>
<td>-0.91</td>
<td>(0.443)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTV from U.K. (weighted)</td>
<td>-5.727</td>
<td>(3.534)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population density in 1500</td>
<td>0.018</td>
<td>(0.014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total of schooling in 1500 (log)</td>
<td>-0.327</td>
<td>(0.250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-0.147</td>
<td>(0.352)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-0.154</td>
<td>(0.248)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polity2 in 1980</td>
<td>-0.011</td>
<td>(0.024)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule of law in 2000</td>
<td>-0.360</td>
<td>(0.239)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religious shares in 1980:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>-0.009*</td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protestant</td>
<td>-0.017**</td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td>0.022***</td>
<td>(0.006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil production (per capita)</td>
<td>1.057</td>
<td>1.687</td>
<td>(1.038)</td>
<td>(1.030)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contemporary controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

R²: 0.426 | 0.421 | 0.438 | 0.440 | 0.423 | 0.417 | 0.408 | 0.435 | 0.562 | 0.426 | 0.569

Table 7: Europe: historical female ages at first marriage

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>(5.175)</td>
<td>(6.894)</td>
<td>(10.357)</td>
<td>(11.132)</td>
<td>(5.708)</td>
<td>(7.291)</td>
</tr>
<tr>
<td>Plow</td>
<td>-1.668</td>
<td>-2.028</td>
<td>(1.168)</td>
<td>(1.206)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>-2.988*</td>
<td>-4.361*</td>
<td>(1.728)</td>
<td>(1.613)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-industrial development:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population density in 1500</td>
<td>0.091***</td>
<td>0.093***</td>
<td>0.093***</td>
<td>0.093***</td>
<td>0.098***</td>
<td>(0.032)</td>
</tr>
<tr>
<td>N</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>27</td>
<td>26</td>
</tr>
</tbody>
</table>

R²: 0.152 | 0.299 | 0.105 | 0.267 | 0.161 | 0.313 | 0.187 | 0.374

Notes: OLS estimates are reported with robust standard errors in parentheses. Historical female age at first marriage data are from Dennison and Ongliev (2014), see more details in Section 3. Countries included: Austria, Belgium, Bulgaria, Croatia, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Malta, Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, and Ukraine. “Cool water” is the cool water index described in Section 3. “Years of agriculture” is the number of years (in thousands) since the Neolithic revolution (from 1500) from Puterman and Trainor (2006). “Plow” is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alsema et al. (2013). “Agricultural suitability” is from Alsema et al. (2013). “Population density in 1500” is from Klein Goldewijk et al. (2010).
Table 8: Determinants of gender gaps: reduced form estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Labor force participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td>0.626***</td>
<td>0.447***</td>
<td>0.715***</td>
<td>0.480**</td>
<td>0.612***</td>
<td>0.310*</td>
<td>0.578***</td>
<td>0.492***</td>
</tr>
<tr>
<td>(0.178)</td>
<td>(0.165)</td>
<td>(0.195)</td>
<td>(0.185)</td>
<td>(0.175)</td>
<td>(0.171)</td>
<td>(0.199)</td>
<td>(0.182)</td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.055***</td>
<td>(0.011)</td>
<td>-0.048**</td>
<td>(0.011)</td>
<td>-0.054***</td>
<td>(0.011)</td>
<td>-0.048***</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Plow</td>
<td>-0.196***</td>
<td>(0.062)</td>
<td>-0.188***</td>
<td>(0.056)</td>
<td>-0.181***</td>
<td>(0.055)</td>
<td>-0.170***</td>
<td>(0.054)</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.149**</td>
<td>(0.067)</td>
<td>0.136**</td>
<td>(0.062)</td>
<td>0.136**</td>
<td>(0.059)</td>
<td>0.104*</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Historical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contemporary controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>156</td>
<td>146</td>
<td>156</td>
<td>146</td>
<td>156</td>
<td>146</td>
<td>156</td>
<td>146</td>
</tr>
<tr>
<td>R^2</td>
<td>0.282</td>
<td>0.452</td>
<td>0.332</td>
<td>0.399</td>
<td>0.493</td>
<td>0.471</td>
<td>0.354</td>
<td>0.504</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.228</td>
<td>0.463</td>
<td>0.276</td>
<td>0.251</td>
<td>0.443</td>
<td>0.419</td>
<td>0.295</td>
<td>0.451</td>
</tr>
<tr>
<td>Panel B: Life expectancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td>0.073***</td>
<td>0.060**</td>
<td>0.078***</td>
<td>0.061**</td>
<td>0.073***</td>
<td>0.052*</td>
<td>0.066**</td>
<td>0.068**</td>
</tr>
<tr>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.025)</td>
<td>(0.028)</td>
<td>(0.029)</td>
<td>(0.026)</td>
<td>(0.028)</td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.005***</td>
<td>(0.002)</td>
<td>-0.005**</td>
<td>(0.002)</td>
<td>-0.005**</td>
<td>(0.002)</td>
<td>-0.005**</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Plow</td>
<td>-0.011</td>
<td>(0.011)</td>
<td>-0.015</td>
<td>(0.011)</td>
<td>-0.011</td>
<td>(0.010)</td>
<td>-0.015</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.012</td>
<td>(0.010)</td>
<td>0.007</td>
<td>(0.012)</td>
<td>0.011</td>
<td>(0.011)</td>
<td>0.004</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Historical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contemporary controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>158</td>
<td>147</td>
<td>158</td>
<td>158</td>
<td>147</td>
<td>158</td>
<td>147</td>
<td>158</td>
</tr>
<tr>
<td>R^2</td>
<td>0.408</td>
<td>0.466</td>
<td>0.413</td>
<td>0.413</td>
<td>0.474</td>
<td>0.468</td>
<td>0.418</td>
<td>0.475</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.363</td>
<td>0.419</td>
<td>0.365</td>
<td>0.364</td>
<td>0.423</td>
<td>0.416</td>
<td>0.365</td>
<td>0.419</td>
</tr>
<tr>
<td>Panel C: Years of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td>0.245</td>
<td>0.114</td>
<td>0.255</td>
<td>0.254</td>
<td>0.087</td>
<td>0.119</td>
<td>0.265</td>
<td>0.085</td>
</tr>
<tr>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>-0.029***</td>
<td>(0.008)</td>
<td>-0.030**</td>
<td>(0.008)</td>
<td>-0.029**</td>
<td>(0.008)</td>
<td>-0.030***</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Plow</td>
<td>-0.017</td>
<td>(0.073)</td>
<td>-0.023</td>
<td>(0.085)</td>
<td>-0.017</td>
<td>(0.074)</td>
<td>-0.023</td>
<td>(0.087)</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>-0.009</td>
<td>(0.057)</td>
<td>-0.004</td>
<td>(0.057)</td>
<td>-0.004</td>
<td>(0.056)</td>
<td>-0.010</td>
<td>(0.059)</td>
</tr>
<tr>
<td>Historical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contemporary controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>130</td>
<td>127</td>
<td>130</td>
<td>130</td>
<td>127</td>
<td>130</td>
<td>130</td>
<td>127</td>
</tr>
<tr>
<td>R^2</td>
<td>0.581</td>
<td>0.618</td>
<td>0.582</td>
<td>0.581</td>
<td>0.619</td>
<td>0.618</td>
<td>0.582</td>
<td>0.619</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.542</td>
<td>0.578</td>
<td>0.539</td>
<td>0.539</td>
<td>0.575</td>
<td>0.574</td>
<td>0.535</td>
<td>0.572</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. "Cool water" is the cool water index described in Section 3. "Years of agriculture" is the number of years (in thousands) since the Neolithic revolution (from 1500) from Puterman and Trainor (2006). "Plow" is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). Historical controls are: ancestral domestication of large animals, ancestral settlement patterns, and ancestral political complexity from Alesina et al. (2013). Contemporary controls are the natural log of per capita income and its square, measured in the same time period as the dependent variable. Continent dummies are included. * p < 0.10, ** p < 0.05, *** p < 0.01.
Online Appendix

The Roots of Female Emancipation
A.1 Data

For a list of the variables used in this article, some descriptive statistics, a short description, and original sources see Table A1.

Here, we extend the discussion on the CW-index from Section 3. A previous version of this index (Welzel, 2014) also included the coastline share of a country’s borders as a proxy for temperate maritime climates. However, this measure neglects the orientation of the coast, which due to prevailing winds, is determinant for the existence of a temperate climate at non-tropical latitudes. Second, for the purposes of this article, access to sea proxies for many other effects unrelated to cool water (e.g., trade access, fisheries) and could therefore confound the interpretation of the CW effect. In any case, the correlation coefficients between the two versions of the index are 0.96 (ancestry-unadjusted) and 0.98 (ancestry-adjusted). Figure 10 plots the current version of the CW index against the previous one. All the econometric results are robust to the inclusion of the coastline variable—coastline as a share of a country’s borders, normalized to [0, 1]—as an additional control variable.

A key concern with our CW-index relates to differences in country area size. Indeed, scores on the CW-index might not be comparable across countries with different area sizes when bigger size implies higher within-country variability in the CW-condition. For instance, both Australia and Italy have similar CW-scores: 0.54 and 0.59, respectively. But in the case of Australia, the score refers to a country that is about 25-times larger than Italy. Accordingly, one would assume that the same CW-score glosses over a much bigger within-country CW-variation in Australia than in Italy. If so, the two CW-scores would appear to be inequivalent, despite the fact that they are numerically similar.

To examine this issue, we use a dataset from the Peace Research Institute (PRIO) in Oslo whose observational units are spatial “grid cells” (Tollefsen et al., 2012). The size of these grid cells approximates 55 by 55 kilometers at the equator. The inhabited grid cells of today’s country-territories amount to 64,818 in number. We can roughly replicate our CW-index by average temperature measures and indications of the occurrence of droughts.
on the grid cell level. The measure of the CW-condition is less detailed than the one we use at the country level. If we nevertheless find that the two measures correlate strongly, we have assurance of the original measure’s validity. This is indeed what we find: there is an almost 70 percent match between our original measure of the CW-condition and aggregations of the CW-condition from grid cell data.

The grid cell data allow us to estimate within-country variation in the CW-condition. To do so, we examine the standard deviations around given country averages and the coefficients of variance, which express the ratio of the standard deviation to the mean. Doing so yields surprising findings.

First, only 14 percent of the variance in the CW-condition across the globe’s roughly 65,000 inhabited grid cells represents differences within countries. By the same token, fully 86 percent of the CW-variance derives from differences between countries. Thus, country averages in the CW-condition are significant and meaningful because they depict by far most of the territorial variation in the CW-condition.

Second, territorial country-size has no influence whatsoever on within-country CW-variation. Hence, the suspicion that the 0.54 CW-score of Australia is incomparable to Italy’s 0.59 CW-score because Australia’s score supposedly hides much more CW-variation than Italy’s is mistaken. Indeed, the coefficient of variance for Italy’s CW-condition is 0.09, which is even marginally larger than Australia’s 0.08. Additional examples illustrate the point: variation of the CW-condition in Canada is not larger than in Slovakia (both at 0.04); likewise, variation of the CW-condition in China is not bigger than in Panama (both at 0.09); most strikingly, variation of the CW-condition in Russia is not bigger than in Jordan (both at 0.04). In conclusion, the concern that differences in country area size make CW-scores incomparable across countries dissolves.

A.2 Additional Tables and Figures
<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>(Std. Dev.)</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
<th>Short description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average female-male ratio in 1990-2010:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor force participation</td>
<td>0.68</td>
<td>(0.21)</td>
<td>0.15</td>
<td>1.01</td>
<td>191</td>
<td>Female / male: % of ages 25-59 in labor force.</td>
<td>ILO Laborsta EAPEP 6th Revision (2011)</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>1.07</td>
<td>(0.04)</td>
<td>0.99</td>
<td>1.21</td>
<td>202</td>
<td>Female / male: life expectancy at birth.</td>
<td>World Development Indicators</td>
</tr>
<tr>
<td>Years of education</td>
<td>0.82</td>
<td>(0.22)</td>
<td>0.21</td>
<td>1.41</td>
<td>146</td>
<td>Female / male: mean years of schooling, ages 25+.</td>
<td>Barro and Lee (2013)</td>
</tr>
<tr>
<td>Female SMAM</td>
<td>21.96</td>
<td>(2.88)</td>
<td>15.56</td>
<td>32.19</td>
<td>214</td>
<td>Female singulate mean age at first marriage.</td>
<td>UN (2009)</td>
</tr>
<tr>
<td>Male SMAM</td>
<td>26.13</td>
<td>(2.28)</td>
<td>21.13</td>
<td>34.49</td>
<td>299</td>
<td>Male singulate mean age at first marriage.</td>
<td>UN (2009)</td>
</tr>
<tr>
<td>Historical female SMAM (Europe)</td>
<td>-2.07</td>
<td>(3.1)</td>
<td>-6.81</td>
<td>2.36</td>
<td>28</td>
<td>Female age at first marriage; country-specific coefficient from regression adjusting for data source characteristics. Europe only; reference country is England; data period is 1500-1900.</td>
<td>Dennison and Ogilvie (2014, Table 2)</td>
</tr>
<tr>
<td>Historical female SMAM (World)</td>
<td>21.52</td>
<td>(4.57)</td>
<td>12.6</td>
<td>28</td>
<td>27</td>
<td>Female singulate mean age at first marriage; earliest data point for the period 1800-1900.</td>
<td>Gapminder</td>
</tr>
<tr>
<td>Cool water</td>
<td>0.48</td>
<td>(0.15)</td>
<td>0.21</td>
<td>0.83</td>
<td>183</td>
<td>Cool water index; see Section 3 for details.</td>
<td>Wielz (2013, 2014)</td>
</tr>
<tr>
<td>Cool water, ancestry-adjusted</td>
<td>0.47</td>
<td>(0.15)</td>
<td>0.01</td>
<td>0.77</td>
<td>165</td>
<td>Cool water index, ancestry-adjusted using the post-1500 migration matrix from Putterman and Weil (2010).</td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>4.31</td>
<td>(2.42)</td>
<td>0</td>
<td>10</td>
<td>165</td>
<td>Thousands of years from 1500 C.R. since the Neolithic revolution.</td>
<td>Putterman and Trainor (2006)</td>
</tr>
<tr>
<td>Years of agriculture, ancestry-adjusted</td>
<td>4.79</td>
<td>(2.23)</td>
<td>0.06</td>
<td>9.9</td>
<td>165</td>
<td>Years of agriculture, ancestry-adjusted using the post-1500 migration matrix from Putterman and Weil (2010).</td>
<td></td>
</tr>
<tr>
<td>Plow</td>
<td>0.48</td>
<td>(0.48)</td>
<td>0</td>
<td>1</td>
<td>227</td>
<td>Share of a country's population with ancestors that practiced plow agriculture.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Variable</td>
<td>Mean</td>
<td>(Std. Dev.)</td>
<td>Min.</td>
<td>Max.</td>
<td>N</td>
<td>Short description</td>
<td>Source</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.54</td>
<td>(0.33)</td>
<td>0</td>
<td>0.98</td>
<td>214</td>
<td>Share of ancestral land suitable for growing barley, wheat, sorghum, rye, foxtail</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>millet, or pearl millet.</td>
<td></td>
</tr>
<tr>
<td>Large animals</td>
<td>0.93</td>
<td>(0.21)</td>
<td>0</td>
<td>1</td>
<td>227</td>
<td>Share of a country’s population with ancestral domestication of large animals.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Political hierarchies</td>
<td>3.3</td>
<td>(1.04)</td>
<td>1</td>
<td>5</td>
<td>227</td>
<td>Ancestral number of political jurisdictional hierarchies (1-5) beyond the local community.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Economic complexity</td>
<td>6.38</td>
<td>(1.38)</td>
<td>1</td>
<td>8</td>
<td>227</td>
<td>Ancestral economic development based on 8 settlement patterns: from nomadic or fully migratory to complex settlements.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Tropical climate</td>
<td>0.74</td>
<td>(0.42)</td>
<td>0</td>
<td>1</td>
<td>211</td>
<td>Share of ancestral land that was tropical or subtropical.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>F_{ST} from U.K. (weighted)</td>
<td>0.09</td>
<td>(0.07)</td>
<td>0</td>
<td>0.23</td>
<td>179</td>
<td>Expected genetic distance between a randomly chosen individual from a given country and a randomly chosen individual from the U.K., using the genetic distances of their respective ancestor populations.</td>
<td>Spolaore and Wacziarg (2009)</td>
</tr>
<tr>
<td>Population density in 1500</td>
<td>9.09</td>
<td>(14.41)</td>
<td>0</td>
<td>100.67</td>
<td>186</td>
<td>Estimated population per squared kilometer in 1500.</td>
<td>Klein Goldewijk et al. (2010)</td>
</tr>
<tr>
<td>Years of schooling in 1950 (log):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.5</td>
<td>(1.2)</td>
<td>-4.44</td>
<td>2.19</td>
<td>146</td>
<td>Log of mean years of schooling, ages 25+.</td>
<td>Barro and Lee (2013)</td>
</tr>
<tr>
<td>Male</td>
<td>0.73</td>
<td>(1.09)</td>
<td>-4.4</td>
<td>2.21</td>
<td>146</td>
<td>Log of male mean years of schooling, ages 25+.</td>
<td>Barro and Lee (2013)</td>
</tr>
<tr>
<td>Female</td>
<td>0.06</td>
<td>(1.6)</td>
<td>-5.24</td>
<td>2.18</td>
<td>146</td>
<td>Log of female mean years of schooling, ages 25+.</td>
<td>Barro and Lee (2013)</td>
</tr>
<tr>
<td>Polity2 in 1980</td>
<td>-1.86</td>
<td>(7.51)</td>
<td>-10</td>
<td>10</td>
<td>142</td>
<td>Democracy score on a 10 point scale: from −10 (hereditary monarchy) to +10 (consolidated democracy).</td>
<td>Center for Systemic Peace</td>
</tr>
<tr>
<td>Variable</td>
<td>Mean</td>
<td>(Std. Dev.)</td>
<td>Min.</td>
<td>Max.</td>
<td>N</td>
<td>Short description</td>
<td>Source</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Rule of law in 2000</td>
<td>-0.03</td>
<td>(1)</td>
<td>-2.31</td>
<td>1.94</td>
<td>201</td>
<td>Rule of law perceptions, measured in units of a standard normal distribution, i.e. ranging from approximately -2.5 to 2.5.</td>
<td>Kaufmann et al. (2011)</td>
</tr>
<tr>
<td>Religious shares in 1980:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>34</td>
<td>(37.03)</td>
<td>0</td>
<td>99.10</td>
<td>152</td>
<td>% of Catholics in total population</td>
<td>La Porta et al. (1999)</td>
</tr>
<tr>
<td>Protestant</td>
<td>12.59</td>
<td>(20.9)</td>
<td>0</td>
<td>97.8</td>
<td>152</td>
<td>% of Protestants in total population</td>
<td>La Porta et al. (1999)</td>
</tr>
<tr>
<td>Muslim</td>
<td>22.87</td>
<td>(35.77)</td>
<td>0</td>
<td>99.90</td>
<td>152</td>
<td>% of Muslims in total population</td>
<td>La Porta et al. (1999)</td>
</tr>
<tr>
<td>Oil production (per capita)</td>
<td>0.04</td>
<td>(0.16)</td>
<td>0</td>
<td>1.36</td>
<td>186</td>
<td>Barrels produced per person per day in 2000</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Female ownership</td>
<td>35.74</td>
<td>(16.4)</td>
<td>2.8</td>
<td>86.8</td>
<td>131</td>
<td>% of firms in the World Bank Enterprise Surveys with some female ownership. The surveys were conducted between 2003 and 2010, depending on the country.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Women in politics</td>
<td>11.96</td>
<td>(9.02)</td>
<td>0</td>
<td>43</td>
<td>156</td>
<td>% of seats in parliament hold by women in 2000.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>GDI in 2014</td>
<td>0.93</td>
<td>(0.07)</td>
<td>0.6</td>
<td>1.03</td>
<td>161</td>
<td>Gender Development Index in 2014</td>
<td>UNDP (2015)</td>
</tr>
<tr>
<td>Intensity agriculture</td>
<td>0.52</td>
<td>(0.46)</td>
<td>0</td>
<td>1</td>
<td>227</td>
<td>Share of country's population with ancestors practicing intensive agriculture or intensive irrigated agriculture.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Subsistence share from husbandry</td>
<td>0.24</td>
<td>(0.16)</td>
<td>0.03</td>
<td>0.92</td>
<td>227</td>
<td>Herding or large animals as a proportion of all ancestral subsistence activities.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Subsistence share from hunting</td>
<td>0.05</td>
<td>(0.05)</td>
<td>0.03</td>
<td>0.31</td>
<td>227</td>
<td>Hunting as a proportion of all ancestral subsistence activities.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Absence of land inheritance rules</td>
<td>0.1</td>
<td>(0.25)</td>
<td>0</td>
<td>1</td>
<td>215</td>
<td>Share of country's population with ancestral absence of inheritance rights of land.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Years of civil conflict (1816-2007)</td>
<td>6.98</td>
<td>(13.67)</td>
<td>0</td>
<td>105</td>
<td>192</td>
<td>Number of years country was involved in civil conflict from 1816-2007. Original source: Correlates of War Database version 4.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Variable</td>
<td>Mean</td>
<td>(Std. Dev.)</td>
<td>Min.</td>
<td>Max.</td>
<td>N</td>
<td>Short description</td>
<td>Source</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Years of interstate conflict (1816-2007)</td>
<td>3.86</td>
<td>(7.69)</td>
<td>0</td>
<td>41</td>
<td>192</td>
<td>Number of years country was involved in interstate conflict from 1816-2007. Original source: Correlates of War Database version 4.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Fraction of European descent</td>
<td>32.56</td>
<td>(41.81)</td>
<td>0</td>
<td>100</td>
<td>164</td>
<td>% of country’s population in 2000 with European ancestry.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Rugged</td>
<td>1.38</td>
<td>(1.38)</td>
<td>0</td>
<td>7.81</td>
<td>227</td>
<td>Terrain Ruggedness Index from Nunn and Puga (2012)</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Communist dummy</td>
<td>0.24</td>
<td>(0.43)</td>
<td>0</td>
<td>1</td>
<td>199</td>
<td>= 1 if country was formerly communist, and 0 otherwise.</td>
<td>Alesina et al. (2013)</td>
</tr>
</tbody>
</table>

Share of GDP in 2000:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>(Std. Dev.)</th>
<th>Min.</th>
<th>Max.</th>
<th>N</th>
<th>Short description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>16.46</td>
<td>(14.98)</td>
<td>0.11</td>
<td>72.01</td>
<td>170</td>
<td>Measured in %. Originally from the World Bank’s World Development Indicators.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>14.29</td>
<td>(7.94)</td>
<td>0.91</td>
<td>39.5</td>
<td>167</td>
<td>Measured in %. Originally from the World Bank’s World Development Indicators.</td>
<td>Alesina et al. (2013)</td>
</tr>
<tr>
<td>Services</td>
<td>53.45</td>
<td>(14.99)</td>
<td>4.25</td>
<td>81.10</td>
<td>169</td>
<td>Measured in %. Originally from the World Bank’s World Development Indicators.</td>
<td>Alesina et al. (2013)</td>
</tr>
</tbody>
</table>
Figure 8: Jamaica: ages at first marriage; 1970 is an outlier. Sources: UN (2009).

Figure 9: World distribution of the CW-condition
<table>
<thead>
<tr>
<th>Table A2: Additional gender equality outcomes and ages at first marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of firms with female ownership, 2003-2010</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ages at first marriage:</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female/male</td>
</tr>
<tr>
<td>Year of obs.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Deep determinants:</td>
</tr>
<tr>
<td>Years of agriculture</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Plow</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Historical controls:</td>
</tr>
<tr>
<td>Large animals</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Political hierarchies</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Economic complexity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tropical climate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Contemporary controls:</td>
</tr>
<tr>
<td>Income per capita (log)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Income per capita (log)²</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Continent dummies Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R²</td>
</tr>
<tr>
<td>adj. R²</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. “Share of firms with female ownership” (in %) is taken from Alesina et al. (2013); originally from the World Bank Enterprise Surveys. “Share of political position held by women” is the percentage of women-held parliament seats, also taken from Alesina et al. (2013). “Gender Development Index” is from UNDP (2015). “Ages at first marriage” are single mean years at first marriage (SMAM) from UN (2009) for the period 1960-2000. For each country, the earliest year available is selected. “Years of agriculture” is the number of years (in thousands) since the Neolithic revolution (from 15000) from Putterman and Trauner (2006). “Plow” is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). “Agricultural suitability” and “Historical controls” are from Alesina et al. (2013). The natural log of per capita income and its square are measured in 2000. * p < 0.10, ** p < 0.05, *** p < 0.01.

Figure 10: Comparing CW index, as described in section 3, with its previous version from Welzel (2014), which included coastal borders as an additional variable. In the figures, the dashed line is the 45 degrees line.
Table A3: Determinants of ages at first marriage: geo-climatic variables

<table>
<thead>
<tr>
<th></th>
<th>Singulate mean ages at marriage: male–female</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. latitude</td>
<td>-2.238***</td>
<td>(0.773)</td>
<td>-3.156***</td>
<td>(0.889)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild summers</td>
<td>-2.542***</td>
<td>(0.825)</td>
<td>-2.868***</td>
<td>(0.815)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous rain</td>
<td>-0.256</td>
<td>(0.734)</td>
<td>-0.861</td>
<td>(0.790)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolness-component</td>
<td>-0.362</td>
<td>(0.930)</td>
<td>-2.267***</td>
<td>(2.551)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-component</td>
<td>-2.376**</td>
<td>(1.067)</td>
<td>-2.472***</td>
<td>(2.024)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td>-5.902**</td>
<td>(2.078)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>0.269**</td>
<td>(0.152)</td>
<td>0.216**</td>
<td>(0.117)</td>
<td>0.228**</td>
<td>(0.092)</td>
<td>0.212**</td>
<td>(0.084)</td>
<td>0.241***</td>
</tr>
<tr>
<td>Flow</td>
<td>0.612</td>
<td>(0.808)</td>
<td>-0.081</td>
<td>(0.092)</td>
<td>0.964</td>
<td>(0.092)</td>
<td>0.127</td>
<td>(0.084)</td>
<td>0.093</td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.512</td>
<td>(0.658)</td>
<td>-0.166</td>
<td>(0.594)</td>
<td>-0.082</td>
<td>(0.645)</td>
<td>0.643</td>
<td>(0.691)</td>
<td>0.601</td>
</tr>
<tr>
<td>Historical controls</td>
<td>Yes</td>
<td>(0.048)</td>
<td>No</td>
<td>(0.015)</td>
<td>No</td>
<td>(0.011)</td>
<td>No</td>
<td>(0.011)</td>
<td>No</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>(0.048)</td>
<td>Yes</td>
<td>(0.015)</td>
<td>Yes</td>
<td>(0.011)</td>
<td>Yes</td>
<td>(0.011)</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td>0.472</td>
<td>0.971</td>
<td>0.450</td>
<td>0.537</td>
<td>0.450</td>
<td>0.485</td>
<td>0.502</td>
<td>0.502</td>
</tr>
<tr>
<td>R²</td>
<td>0.396</td>
<td>0.426</td>
<td>0.371</td>
<td>0.469</td>
<td>0.371</td>
<td>0.411</td>
<td>0.425</td>
<td>0.420</td>
<td>0.420</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. "Male–female SMAM" is the gender gap in SMAM data from UN (2009). "Abs. latitude" is the absolute latitude (in degrees) at a country's centroid. "Mild summers" is the inverse of the usual peak temperature (in degrees Celsius) in a country's hottest month of the year. "Continuous rain" is the square root of the typical rainfall (in cubic millimeters) in a country’s driest month. The three previous variables are normalized to [0,1]. "Coolness and Water" are the two dimensions extracted from a factor analysis of the previous three variables, see Section 3 for more details. "Cool water" is the cool water index described in Section 3. Historical controls are: ancestral domestication of large animals, ancestral settlement patterns, and ancestral political complexity from Ablesia et al. (2013). Financial controls are the natural log of per capita income and its square, measured in the same time period as the dependent variable. Continent dummies are included. \(* p < 0.10, ** p < 0.05, *** p < 0.01 \)

Table A4: Determinants of ages at first marriage: ancestry-adjustment

<table>
<thead>
<tr>
<th></th>
<th>Singulate mean age at first marriage: (Female)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water, ancestry-adjusted</td>
<td>5.706**</td>
<td>(2.729)</td>
<td>6.133**</td>
<td>(2.964)</td>
<td>-2.081</td>
<td>-2.570</td>
<td>0.289**</td>
<td>0.331***</td>
<td>-7.837***</td>
</tr>
<tr>
<td>Years of agriculture, ancestry-adjusted</td>
<td>-0.142</td>
<td>(0.152)</td>
<td>-0.071</td>
<td>(0.117)</td>
<td>-0.033</td>
<td>(0.012)</td>
<td>0.003</td>
<td>(0.003)</td>
<td>(0.088)</td>
</tr>
<tr>
<td>Political hierarchies</td>
<td>0.442*</td>
<td>(0.811)</td>
<td>0.575*</td>
<td>(0.862)</td>
<td>0.155</td>
<td>(0.769)</td>
<td>0.110</td>
<td>(0.812)</td>
<td>0.023</td>
</tr>
<tr>
<td>Economic complexity</td>
<td>0.026</td>
<td>(0.248)</td>
<td>0.019</td>
<td>(0.308)</td>
<td>0.169</td>
<td>(0.190)</td>
<td>0.163</td>
<td>(0.256)</td>
<td>0.007</td>
</tr>
<tr>
<td>Current controls:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income per capita (log)</td>
<td>4.628**</td>
<td>(3.206)</td>
<td>5.023**</td>
<td>(2.412)</td>
<td>5.399***</td>
<td>5.567***</td>
<td>0.109</td>
<td>-0.001</td>
<td>0.968</td>
</tr>
<tr>
<td>(Income per capita (log))^2</td>
<td>-0.244</td>
<td>(0.132)</td>
<td>-0.264</td>
<td>(0.137)</td>
<td>-0.297</td>
<td>(0.114)</td>
<td>0.120</td>
<td>(0.020)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Year of SMAM obs.</td>
<td>0.006*</td>
<td>(0.022)</td>
<td>0.077*</td>
<td>(0.022)</td>
<td>0.048*</td>
<td>(0.021)</td>
<td>0.048*</td>
<td>(0.022)</td>
<td>0.005</td>
</tr>
<tr>
<td>Constant</td>
<td>-135.460***</td>
<td>(48.073)</td>
<td>-138.485***</td>
<td>(49.143)</td>
<td>-93.693***</td>
<td>-92.886***</td>
<td>-1.856</td>
<td>-2.052</td>
<td>57.631**</td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td>0.375</td>
<td>0.389</td>
<td>0.201</td>
<td>0.214</td>
<td>0.524</td>
<td>0.545</td>
<td>0.514</td>
<td>0.534</td>
</tr>
<tr>
<td>R²</td>
<td>0.309</td>
<td>0.305</td>
<td>0.122</td>
<td>0.101</td>
<td>0.472</td>
<td>0.480</td>
<td>0.461</td>
<td>0.467</td>
<td></td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. "Singulate mean age at first marriage" data are from UN (2009) for the period 1960-2006. For each country, earliest year available is selected and controlled for with variables "Years of agriculture, ancestry-adjusted" is the cool water index described in Section 3 and "Years of agriculture, ancestry-adjusted" is the number of years (in thousands) since the Neolithic revolution (from 1500) from Putteman and Trainer (2010). "Cool water, ancestry-adjusted" is the cool water index described in Section 3 and "Years of agriculture, ancestry-adjusted" is the number of years (in thousands) since the Neolithic revolution (from 1500) from Putteman and Trainer (2010). Both variables are adjusted for a country’s ancestral population using the post-1500 migration matrix of Putteman and West (2006). "Cool water, ancestry-adjusted" is the cool water index described in Section 3. "Coolness and Water" are the two dimensions extracted from a factor analysis of the previous three variables, see Section 3 for more details. Historical controls are: ancestral domestication of large animals, ancestral settlement patterns, and ancestral political complexity from Ablesia et al. (2013). Financial controls are the natural log of per capita income and its square, measured in the same time period as the dependent variable. Continent dummies are included. \(* p < 0.10, ** p < 0.05, *** p < 0.01 \)
Table A5: Determinants of ages at first marriage: excluding Northwest Europe and Western offshoots

<table>
<thead>
<tr>
<th></th>
<th>Full sample</th>
<th>W/o NW Europe</th>
<th>Full sample</th>
<th>W/o NW Europe and offshoots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Deep determinants:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td>-5.902***</td>
<td>-5.640***</td>
<td>-5.672**</td>
<td>-5.372**</td>
</tr>
<tr>
<td></td>
<td>(2.078)</td>
<td>(2.148)</td>
<td>(2.167)</td>
<td>(2.225)</td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>0.154*</td>
<td>0.153*</td>
<td>0.157*</td>
<td>0.155*</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.092)</td>
<td>(0.094)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>Plow</td>
<td>0.869</td>
<td>0.852</td>
<td>0.847</td>
<td>0.802</td>
</tr>
<tr>
<td></td>
<td>(0.725)</td>
<td>(0.721)</td>
<td>(0.735)</td>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td>0.523</td>
<td>0.506</td>
<td>0.516</td>
<td>0.513</td>
</tr>
<tr>
<td></td>
<td>(0.646)</td>
<td>(0.652)</td>
<td>(0.656)</td>
<td>(0.656)</td>
</tr>
<tr>
<td>Northwest Europe</td>
<td>-0.421</td>
<td>-0.453*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.267)</td>
<td>(0.268)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western offshoots</td>
<td>-0.568</td>
<td></td>
<td></td>
<td>-0.568</td>
</tr>
<tr>
<td></td>
<td>(0.631)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contemporary controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continent dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

N	121	121	112	121	108
R^2	0.498	0.500	0.466	0.501	0.438
adj. R^2	0.426	0.424	0.382	0.419	0.353

Notes: OLS estimates are reported with robust standard errors in parentheses. “Northwest Europe” is a dummy taking value 1 for Belgium, Denmark, France, Germany, Iceland, Ireland, Netherlands, Norway, Sweden, and the United Kingdom. “Western offshoots” is a dummy taking value 1 for Australia, Canada, New Zealand, and the United States. Baseline historical controls are: ancestral domestication of large animals, ancestral settlement patterns, and ancestral political complexity from Alesina et al. (2013). Baseline contemporary controls are the natural log of per capita income and its square averaged over the period 1960-1980, and the year of the SMAM observation. Continent dummies are included. * p < 0.10, ** p < 0.05, *** p < 0.01.
OLS estimates are reported with robust standard errors in parentheses. “Male ancestral settlement patterns, and ancestral political complexity from Alesina et al. (2013). “Male ancestral settlement patterns, and ancestral political complexity from Alesina et al. (2013). “Plow” is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). The Neolithic revolution (from 1500) from Putterman and Trairnor (2006). “Plow” is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). These historical controls are: ancestral domestication of large animals, ancestral settlement patterns, and ancestral political complexity from Alesina et al. (2013). Baseline contemporary controls are the natural log of per capita income and its square, measured in the same time period as the dependent variable. Continent dummies are included. For a description of the additional control variables see Table A1. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

Table A7: Gapminder: historical female ages at first marriage

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical female age at first marriage, 1800-1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cool water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of agriculture</td>
<td>0.280</td>
<td>0.260</td>
<td>0.321</td>
<td>0.446</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.402</td>
<td>1.634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.061)</td>
<td>(1.260)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural suitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.280</td>
<td>0.272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.611)</td>
<td>(1.547)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-industrial development:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population density in 1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.036</td>
<td>4.060</td>
<td>3.036</td>
<td>1.172</td>
<td>2.059</td>
<td>2.823</td>
<td>3.264</td>
<td>4.018</td>
</tr>
<tr>
<td></td>
<td>(2.391)</td>
<td>(2.916)</td>
<td>(4.785)</td>
<td>(5.729)</td>
<td>(2.384)</td>
<td>(2.690)</td>
<td>(2.815)</td>
<td>(3.163)</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.761</td>
<td>0.765</td>
<td>0.747</td>
<td>0.750</td>
<td>0.768</td>
<td>0.774</td>
<td>0.761</td>
<td>0.765</td>
</tr>
<tr>
<td></td>
<td>(0.752)</td>
<td>(0.745)</td>
<td>(0.725)</td>
<td>(0.716)</td>
<td>(0.749)</td>
<td>(0.745)</td>
<td>(0.741)</td>
<td>(0.734)</td>
</tr>
<tr>
<td>adj. R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.498</td>
<td>0.522</td>
<td>0.505</td>
<td>0.504</td>
<td>0.518</td>
<td>0.510</td>
<td>0.501</td>
<td>0.519</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>117</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.426</td>
<td>0.443</td>
<td>0.429</td>
<td>0.427</td>
<td>0.438</td>
<td>0.414</td>
<td>0.421</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
</tbody>
</table>

Notes: OLS estimates are reported with robust standard errors in parentheses. “Historical female age at first marriage” data are country averages for the period 1801-1900 from Gapminder. Countries included: Armenia, Azerbaijan, Bangladesh, Belarus, China, Egypt, Estonia, Finland, Georgia, Germany, Iceland, India, Japan, Kazakhstan, Lithuania, Moldova, Netherlands, Norway, Pakistan, Russia, Spain, Sri Lanka, Sweden, Ukraine, United Kingdom, and United States of America. “Cool water” is the cool water index described in Section 3. “Years of agriculture” is the number of years (in thousands) since the Neolithic revolution (from 1500) from Putterman and Trairnor (2006). “Flow” is the proportion of population with ancestors that used the plow in pre-industrial agriculture from Alesina et al. (2013). “Agricultural suitability” is from Alesina et al. (2013). “Population density in 1500” is from Klein Goldewijk et al. (2010).