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Abstract

We consider a general economy, where agents have private information about their
types. Types can be multi-dimensional and potentially interdependent. We show
that, if the interim distribution of types is common knowledge (the exact number
of agents for each type is known), then a mechanism exists, which is consistent
with truthful revelation of private information and which implements first-best
allocations of resources as the unique Bayes-Nash equilibrium. Our result requires
weak restrictions on preferences (Local Non-Common Indifference Property) and
on the Pareto correspondence (Anonymity) and it is robust to small perturba-
tions regarding the knowledge of the interim distribution. Our paper is useful in
understanding the power of information aggregation in alleviating incentive con-
straints and is particularly pertinent to games with large populations, in which
case the interim distribution of types converges to a unique distribution.
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1 Introduction

As first shown by the papers of Akerlof (1970), Spence (1973) and Rothschild and
Stiglitz (1976), hidden-types (adverse selection) problems can have significant conse-
quences in terms of efficiency on economic outcomes1. More specifically, incentive com-
patibility constraints limit the set of feasible allocations that can be attained. How
are these restrictions relaxed as more information becomes common knowledge? And
what is the minimum additional information required for achieving first-best efficiency?
These are some of the questions that have emerged in the attempt to better under-
stand the effects of information aggregation on efficiency. Indeed, some early papers
by McAfee (1992), Armstrong (1999) and Casella (2002) already point towards this
direction.

In this paper we claim that if the number of agents with the same type is known
for all types in a population (what we call the interim distribution of types), then it
is possible, under fairly general conditions, to implement first-best allocations. More
precisely, we consider an economy with asymmetric information and finite agents, each
one of whom has private information about his type. We also assume that i) the
interim-distribution of types is common knowledge, ii) preferences satisfy the Local
Non-Common Indifference Property and iii) the social choice set satisfies Anonymity2.
Given these general conditions, we show that it is possible to construct a mechanism
which has a unique Bayes-Nash equilibrium, where all agents reveal their type truthfully
and they receive a first-best allocation.

This result has two interpretations. On one hand, one may consider economic
applications with a finite number of agents, where, in addition to the private information
that each individual has, there is knowledge about how many agents have each type.
This additional information could come from a positive or negative information shock.
For example, a retail store has received pre-paid orders from its customers, has already
the goods in stock and is ready to make the deliveries. However, the records on the
orders get destroyed due to an accident and the store’s manager does not know who
made each order. What can he do? Can he induce the customers to reveal the orders
they have made truthfully without them making unreasonable claims or receiving orders
that were meant for other customers? We claim that this is possible, as long as the

1The title of our paper may be slightly misleading. Adverse selection is, of course, the outcome
that may be generated in private information environments. The true source of the problem is the
hidden information. Despite the fact that in our paper we have a hidden-types economy, we show
that in the equilibrium of our mechanism, individuals reveal their information truthfully and they
receive first-best allocations based on that. Therefore, adverse selection problems never arise as an
equilibrium of our game. So, our main claim is that information aggregation, under certain conditions,
can eliminate the possibility of adverse selection outcomes.

2Since we are considering an economy of incomplete information, different realizations of types,
which are consistent with the same interim-distribution, result in different desirable allocations. There-
fore, we use the term Social Choice Set instead of the term Social Choice Rule or Correspondence,
which usually refers to complete information environments. See also Jackson (1991) and Palfrey and
Srivastava (1989).
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manager posts a list with all the orders made and gives to each customer a basket of
goods, which depends on how many other agents have claimed to have ordered it.

On the other hand, one can interpret this result as an application of the law of
large numbers. If the ex-ante probability distribution is known, then, for sufficiently
large populations, one can obtain a quite accurate estimate of the aggregate number of
agents who have a specific type and, based on this information, he can address adverse
selection problems. An example of this case would be insurance companies, which have
data on millions of cases, collected over decades, and know with very high accuracy
the probability of certain accidents taking place and how personal characteristics affect
these probabilities. While the main result is originally stated for the case where the
interim distribution is known with perfect precision, we subsequently prove that it holds
for the case where it is known with a small noise.

Our formulation is general enough to accommodate both interpretations and the
intuition behind the result is common. If the interim-distribution is known, then one
can aggregate the messages that all agents are sending out and uncover any misreport(s),
even if the identity of the liar is not known. As a consequence, appropriately designed
punishments for lying can induce agents to reveal their information truthfully.

We talk about appropriately designed punishments, because one of the features of
our mechanism is that punishments must not be too extreme. If the punishment from
detecting a lie is too severe, then some agents may deliberately lie about their type in
order to force other agents to also do so. The lies cancel out in terms of the aggregate
information and the former agents “steal” the allocations of the latter, who are forced
to lie under the fear of the extreme punishments. This can lead to coordination failures
and multiplicity of equilibria. Therefore, uniqueness of the equilibrium requires a careful
construction of the allocations when lies are detected. We show that such punishments
exist when the indifference curves of different types are not locally identical, meaning
that in the neighborhood of any allocation one can find other allocations such that each
type prefers one of these over the rest.

We should also point out that we derive this result for a general hidden-types envi-
ronment. Types can be multi-dimensional, valuations can be independent or interde-
pendent and the joint probability distribution over type-profiles allows for correlation
across types or dependencies on the identity of the agents (different agents may face
different probability distributions over types). The only restriction we impose on our no-
tion of (Pareto) efficiency is Anonymity. Anonymity requires that the allocation, which
an agent receives, depends only on his type (and possibly on the interim-distribution)
but not on his identity. It is a reasonable assumption which is satisfied by the majority
of social choice sets. For instance, in many mechanism design papers, a mechanism is
efficient if it implements the utilitarian social choice set, which satisfies our definition
of Anonymity3.

The Walrasian correspondence is another example of a well-known social choice set
which satisfies Anonymity. The issues of the existence of equilibrium and its welfare

3See for example the papers by Mezzetti (2004), Jackson and Sonnenschein (2007).
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properties in economies with adverse selection have been analyzed by many papers in
the context of the Walrasian mechanism4. It has been shown that the equilibrium,
if it exists, is inefficient. Since the usual justification for competitive behavior is the
large number of agents in both sides of markets (indeed, most of these papers assume
a continuum of agents), one can apply our mechanism in order to implement the full-
information competitive equilibrium allocations in the examined economies.

Moreover, it should be pointed out that the assumption of the interim distribution
of types being common knowledge is needed because we consider general social choice
sets. If we focus on the implementation of specific allocations on the Pareto frontier so
that allocations depend only on ones type, we can implement the first-best as a unique
equilibrium even if agents have heterogeneous beliefs or no information at all about
the interim distribution5. Our mechanism can still implement the desirable allocations
truthfully, given that the social planner knows the interim distribution. This is because,
as becomes clear in section 4, players’ best-response correspondences depend on their
beliefs about how many misreports will be detected by the mechanism and not on their
ability to detect other agents’ lies. For instance, this formulation fits the example of
the store manager we provided earlier. The manager does not have to post the list of
orders as we suggested earlier (though it was useful for the purposes of the exposition).
It is sufficient that agents know that he knows them.

We also provide necessary and sufficient conditions for full implementation when the
interim-distribution is common knowledge and examples of well known economies with
adverse selection, where our mechanism can be implemented. It should be stressed that
we obtain our equilibrium by using iterated elimination of strictly dominated strategies
and, hence, it is also a Bayes-Nash equilibrium. This contrasts with most of the existing
papers, where the Bayesian equilibrium concept is used. Finally, we examine issues of
robustness to small perturbations regarding the knowledge of the interim-distribution
and issues of participation constraints.

2 Related Literature

Our paper is most closely related to papers that use information aggregation to imple-
ment first-best allocations in economies with asymmetric information. Thus, in terms
of spirit and research questions, Jackson and Sonnenschein (2007) is the paper closest
to ours. They consider a specific set of agents, who play multiple copies of the same
game at the same time and their types are independently distributed across games.
They allow for mechanisms, which “budget” the number of times that an agent claims
to be of a certain type. If the number of parallel games becomes very large, then all
the Bayes-Nash equilibria of these mechanisms converge to first-best allocations.

4Examples include Prescott and Townsend (1984), Gale (1992 and 1996), Dubey and Geanakoplos
(2002), Dubey, Geanakoplos and Shubik (2005), Bisin and Gottardi (2006), Rustichini and Siconolfi
(2008).

5E.g. the Walrasian correspondence in the Rothschild-Stiglitz model.
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Our model differs from that of Jackson and Sonnenschein in four dimensions: i)
we do not require multiple games to be played at the same time but we impose a
stronger assumption on what is common knowledge (or, in certain cases, what is known
by the central planner). ii) We allow for interdependent values, while they consider
an independent values setting. iii) We allow for a more general joint probability over
type profiles, since types can be independently or interdependently distributed in our
formulation, and apart from preferences, types may concern other individual character-
istics as well (productivity parameters, proneness to accidents, etc.). iv) We also allow
for a more general social choice set. In terms of results, if values are interdependent
(but still independently distributed), the Jackson-Sonnenschein mechanism may have
multiple equilibria in the limit, while we prove the uniqueness of the equilibrium under
small perturbations.

McLean and Postlewaite (2002, 2004) also consider efficient mechanisms in economies
with interdependent values. The state of the world is unknown to all agents, but each
individual receives a noisy private signal about the state. They show that when signals
are sufficiently correlated with the state of the world and each agent has small informa-
tional size (in the sense that his signal does not contain additional information about
the state of the world when the signals of all the other agents are taken into account),
then their mechanism implements allocations arbitrarily close to first-best allocations.

There are two main differences between their setting and ours. First, in the model
of McLean and Postlewaite when private signals are perfectly correlated with the state
of the world all agents learn not only their own type but also the type of all other
agents. That is, in the limit, the framework of McLean and Postlewaite is one of com-
plete information. In contrast, in our setting agents can, at most, know the interim
distribution of types (when the signal is perfect)6. Second, McLean and Postlewaite
implement allocations arbitrarily close to first-best while we achieve exact first-best im-
plementation even when agents face a slight uncertainty about the interim-distribution,
i.e. when private signals are slightly noisy.

Our paper is also related to the auctions literature with interdependent types. In
this context, Crémer and McLean (1985) and Perry and Reny (2002, 2005), show the
existence of efficient auctions when types are interdependent. Crémer and McLean,
however, require large transfers which may violate ex-post feasibility. Also, Perry and
Reny require the single crossing property on preferences which is a stronger restriction
than ours. Our general framework can encompass auction design problems as well.
Furthermore, our main focus is the uniqueness of the equilibrium, an issue which is not
studied in these papers.

It is also noteworthy that in the framework of auction design the papers by Maskin
(1992), Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001) show, in increas-
ing generality, that efficiency and incentive compatibility can not be simultaneously
satisfied if the single crossing condition is violated or if signals are multidimensional. In

6In a sense, in our model agents receive private signals as well, but one can think of them as perfect
signals about the interim distribution. As we have already mentioned, a small noise about the precision
of these signals does not alter our results.
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that respect, the additional information of our environment allows us to overcome this
impossibility and implement efficient outcomes, even if conditions, which are necessary
in the standard mechanism design literature for implementation, are violated.

Rustichini, Satterthwaite and Williams (1994) show that the inefficiency of trade
between buyers and sellers of a good, who are privately informed about their preferences,
rapidly decreases with the number of agents involved in the two sides of the market and
in the limit it reaches zero. Effectively, the paper examines the issue of convergence to
the competitive equilibrium as the number of agents increases. However, their model
is limited to private values problems and hence it can be seen as a special case of our
formulation.

More recently, the papers by Mezzetti (2004) and Ausubel (2004),(2006) examine the
issues of efficient implementation under interdependent valuations and independently
distributed types. However, they also assume that agents’ preferences are quasi-linear
with respect to the transfers they receive, whereas in our model utility may not be
transferable. Moreover, the mechanisms proposed in these papers may generate multiple
equilibria (in most of which truth-telling is violated), while we are interested in a
mechanism which has a unique truth-telling equilibrium.

3 The Economy

The economy consists of a finite set I of agents, with I standing for the aggregate number
of agents as well. Θ is the finite set of potential types (so ϑi is the type of a single
agent i). The vector θ contains I elements and is a type-profile, a realization of a type
for each agent. Each agent has private information about his own type, but does not
know the types of the other agents. Φ is the ex-ante cumulative distribution function
over the set of all possible type-profiles Θ, with Φ(θ) the ex-ante probability that the
type-profile θ is realized.

S is the finite set of all states. Each state s is a complete description of the publicly
available information. Depending on the application, this may include agents’ features
or public shocks. The probability distribution over states Π is a function of the type-
profile θ. Therefore, π(s|θ) is the probability of state s arising, conditional on the
type-profile θ.

β is an unordered collection of I realizations of types (potentially the same types for
some realizations). The interpretation is that β is the distribution of types that have
been realized. Given a β, the exact number of agents who have a specific type is known
for all types. We slightly abuse terminology by calling β the interim distribution of
types7. Θ(β) is the set of all type-profiles consistent with the interim distribution β,

7A more accurate definition of the interim distribution is the percentage of realizations of each
type over the entire population, namely the collection of numbers I(ϑ) = λβ(ϑ)/I, where λβ(ϑ)
is the number of agents who have type ϑ given the collection β. However, since the collection β
already contains this information and for notational simplification, we retain the misnomer of interim-
distribution for β.
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while Θ(β) is the collection of types which have realized, as can be inferred from the
interim distribution β.

The above elements characterize the economy: E = {I,Θ,Φ, S,Π, β}. We assume
that E is common knowledge. Given E, let A(E) (or simply A) be the set of all feasible
allocations, with elements a ∈ A ⊆ RI×S×L

+ , with L × S > 2. L can be interpreted
as the number of commodities in the economy. Each a is an S-tuple of feasible state-
dependent allocations. In other words, the collection of feasible allocations may depend
on the state of the world. Furthermore, we assume that preferences are represented by
expected utility functions:

Ui(a) =
∑
θ−i

[∑
s∈S

ui(a, s) π (s|ϑi,θ−i)
]
φ(θ−i|ϑi, β) , θ−i ∈ Θ−i(β|ϑi)

Ui(a) is the expected utility to agent i when he receives allocation a, with ui(a, s) the
decision-outcome payoff in state s (preferences may be state-dependent) and θ−i is a
type-profile for all agents, excluding i, which is consistent with the interim-distribution
of types β8.

The formulation of the economy allows for modeling a wide variety of economic
situations. Types may or may not be independently distributed, and the character-
istics of agents may or may not depend on the types of other agents. Hence, both
adverse-selection problems with independent or inter-dependent valuations can be seen
as special cases of our formulation.

4 Implementation of First Best Allocations

4.1 Implementation

In this subsection we show that the conditions specified in section 3 are sufficient for the
implementation of truthful strategies. Full implementation (i.e. the uniqueness of the
truthful equilibrium) requires additional conditions, which we specify in subsections 4.2
and 4.3. The main idea is simple. The knowledge of the interim distribution of types
allows the construction of a direct mechanism, which provides allocations conditional on
the message profile being consistent with the interim distribution or not. If the message
profile is different from the interim distribution, this is considered as an indication of
lying by some agent, in which case the mechanism provides a “punishment” allocation.
As a result, an agent reveals his information truthfully, if all other agents reveal their
information truthfully as well.

Let a∗ = (a∗1, a
∗
2, ..., a

∗
i , ..., a

∗
I) be a Pareto efficient allocation of the economy. ai

represents an individual allocation, namely it is a vector of state-contigent allocations
for agent i. Let am be an individual allocation such that amls = min{a∗ils} for every

8Therefore, we implicit require the standard six axioms for expected utility representation: Com-
pleteness, Transitivity, Local Non-Satiation, Convexity, Continuity and Independence of Irrelevant
Alternatives.
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i ∈ I and for each state-contingent commodity ls. By construction, I × am is feasible.
Consider the direct mechanism M0(g, a) , g : M → A, in which agents state their type.
λβ(ϑ) is the number of agents with type ϑ according to the interim distribution β and
λm(ϑ) is the number of agents who report type ϑ. Agents receive allocations according
to the following message profiles:

• If λβ(ϑ) = λm(ϑ) , ∀ ϑ ∈ Θ(β), then ai = a∗i , ∀ i ∈ I.

• If λβ(ϑ) 6= λm(ϑ) for at least one ϑ ∈ Θ(β), then ai = am, ∀ i ∈ I.

Claim 1: M0 has a truthful equilibrium.

Proof: Suppose I − 1 agents report truthfully. By Local Non-Satiation, Ui(a
∗
i ) >

Ui(a
m). Therefore, it is a best-response for agent i to report truthfully as well.

This demonstrates that if the interim-distribution is common knowledge, it is sufficient
for truthful implementation under the standard conditions on preferences in general
economic environments. In fact, implementation of the truthful equilibrium is possible
even when there is a single state contingent commodity. Hence, the implementation
of first-best allocations is possible in the most well-known models of adverse selection
(Akerlof (1970), Spence (1973), Rothschild-Stiglitz (1976)) if one makes the additional
assumption that the interim-distribution is known.

Even though this is a strong assumption, in subsection 4.6, we show that as the num-
ber of agents increases, the interim-distribution converges to the ex-ante distribution of
types. Hence, the standard assumptions of the literature are sufficient for implementa-
tion of first-best allocations when the number of agents is sufficiently large9.

4.2 Full Implementation

In this section we provide sufficient conditions for full implementation. We make three
assumptions additional to section 3. We then present a series of Lemmata, which
are used in the proof of the main Proposition, and provide the main claim of the
paper: if the interim-distribution of types is common knowledge, preferences satisfy the
Local Non-Common Indifference Property (LNCIP) and the social choice set satisfies
Pareto efficiency and Anonymity, then a mechanism exists that fully implements it.
The assumptions required for this result are the following.

Assumption 1: The Social Choice Sets satisfy Anonymity.

9Actually, for our results to obtain we do not require that the interim distribution converges to the
ex ante distribution. We only need that the interim distribution converges to a unique distribution,
given the correlation between draws.

8



Definition 1: A Social Choice Set satisfies Anonymity if, for every social choice func-
tion in the set, each agent’s assigned allocation depends only on his type and the
interim-distribution of types: a∗i = a(ϑi, β).

Under Anonymity, agents who have identical types receive identical allocations. There-
fore, an agent’s identity per-se has no impact on the agent’s final allocation. As a
result, for any interim-distribution of types there is a unique collection of allocations
to be assigned to agents. The order of the allocations does depend on the type-profile
θ, but the collection of individual allocations is the same for all type-profiles consistent
with the same interim-distribution.

It is also noteworthy that Anonymity is a desirable property for a social choice rule.
In most cases of interest, economists are concerned with the economic characteristics
of agents and not with their identity. Therefore, it is reasonable to assume that if the
distribution of these characteristics remains unchanged, so does the distribution of the
economically desirable outcomes. It is also a property satisfied by many commonly used
social choice rules, like the Walrasian correspondence and the utilitarian social welfare
function.

Assumption 2: Preferences satisfy the Local Non-Common Indifference Property
(LNCIP).

This is a requirement that the intersection of the indifference planes around any in-
dividual allocation of any two agents with different types is of at least one dimension
lower than the dimensions of the indifference planes themselves. In other words, if the
indifference planes are n-dimensional (e.g. three-dimensional surfaces), the intersection
around any allocation ai is (n-1)-dimensional (e.g. curves). Formally:

Definition 2: Let Ciε(a) = {c ∈ A : Ui(c|ϑi,θ−i) = Ui(a|ϑi,θ−i), ‖c− a‖ < ε}.
The Local Non-Common Indifference Property is satisfied if ∀i ∈ I, ∀a ∈ A and
∀j ∈ I, ϑj 6= ϑi, there exists εij > 0 : dim (Ciε(a) ∩ Cjε(a)) 6 L× S − 1 , ∀ ε < εij.

LNCIP is a weaker restriction than the Single-Crossing Property (SCP) which is usually
used in the literature. For example, any pair of indifference curves that has finitely
many intersections satisfies the LNCIP but it violates the SCP. Also, LNCIP allows for
tangent indifference planes (as long as the tangent parts “miss” at least one dimension
compared to the indifference planes), while the SCP does not. On the other hand, if
SCP is satisfied then LNCIP is also satisfied10. Figure 1 provides two diagrams, which

10Note that we could alternatively characterize this restriction on preferences in terms of the ax-
iomatic approach. Apart from the standard axioms (Completeness, Transitivity, Local Non-Satiation,
Convexity, Continuity and Independence of Irrelevant Alternatives), we would require the Axiom of
Local Non-Common Indifference. In this case, the only difference from the definition provided above
is the definition of Ciε(a): Ciε(a) = {c ∈ A : c ∼i a, ‖c− a‖ < ε}.
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ai
ai

Figure 1: Indifference Curves satisfying LNCIP

illustrate the LNCIP and distinguish it from the SCP.
Finally, we denote by A(ai) the set of individual allocations strictly less than ai:

A(ai) = {ci ∈ A : cils 6 ails,∀ ls}. Li(ai) is the lower contour-set for an agent i given
some individual allocation ai.

Assumption 3: If for ϑ, ϑ′ holds that a∗ϑ �ϑ′ a∗ϑ′ and a∗ϑ′ �ϑ c , ∀c ∈ A(a∗ϑ)∩Lϑ′(a∗ϑ′),
then λβ(ϑ′) > λβ(ϑ), where ϑ and ϑ′ are different types.

Assumption 3 ensures feasibility off-the-equilibrium-path and is discussed in more detail
after the presentation of Lemma 4. Below, we provide three results which hold for any
Pareto efficient allocation. The combination of these results shows that every allocation
on the Pareto frontier of an economy generates a “social ranking” among the agents of
the economy, such that agents of “lower ranks” envy the allocations of “higher ranks”.
We exploit the common knowledge of this ranking, due to the common knowledge of
the interim-distribution and the efficiency of the allocation, in order to construct a
mechanism, which has a unique equilibrium and in which agents reveal their private
information truthfully.

Lemma 1: Let PF(E) be the Pareto Frontier of economy E. Then, for every allo-
cation a on the Pareto Frontier, there exists at least one agent i ∈ I, who does not envy
the allocation of any other agent: Ui(ai) > Ui(aj),∀j ∈ I.

Proof: See the Appendix

Lemma 2: For every allocation a on the Pareto Frontier, there exists at least one
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agent i ∈ I, whose allocation is not envied by any other agent: Uj(aj) > Uj(ai),∀j ∈ I.

Proof: See the Appendix

Corollary 1: If a ∈ PF (E), then Lemma 1 and 2 hold for any subset of I. Namely, let
Ǐ ⊆ I and let Ǎ = {ai : i ∈ Ǐ}. Then, if a ∈ PF (E), Lemma 1 and 2 hold for Ǐ with
regard to Ǎ as well.

Proof: See the Appendix

Lemma 1 and 2 provide two necessary conditions for Pareto efficiency. If these condi-
tions are violated, then an allocation can not be Pareto efficient. However, they are not
sufficient. One can easily find examples, where these conditions hold but the allocation
is not on the Pareto frontier of the economy. Most importantly for our purposes, they
imply that any Pareto efficient allocation exhibits a social ranking between groups of
agents who envy and groups who are envied.

Let Rank(K) = {i ∈ I : Ui(ai) > Ui(aj),∀j ∈ I}, be the set of agents who do not
envy the allocation of any other agent. By Lemma 1, we know that this set is non-
empty. Then, by removing this set of agents from the set I and applying Corollary 1,
we can define Rank(K-1) = {i ∈ I −Rank(K) : Ui(ai) > Ui(aj),∀j ∈ I −Rank(K)}.
By iteration, we can define K groups, 1 6 K 6 I, such that the agents in each one of
them do not envy any of the agents in their own group or groups with lower rank, but
they envy the allocation of some agent(s) in groups with higher rank11. We will also
refer to group Rank(K) as the group with the highest rank and group Rank(1) as
the group with the lowest rank. Some additional results required for the proof come
from the LNCIP and are provided in Lemma 3 and Lemma 4.

Lemma 3: If the LNCIP holds, then around the neighborhood of any individual
allocation ai, there exists a set of allocations such that each agent of a certain type
prefers a particular allocation over the rest.

Proof: See the Appendix

In effect, Lemma 3 states that it is possible to find incentive compatible allocations
for any type in the neighborhood of any allocation, which implies that it is possible to

11One extreme case is when an allocation exhibits no-envy, in which case Rank(K) contains the
whole set of agents and Lemma 1 and 2 apply for all (egalitarian allocations). The other extreme case
is when each rank-group contains a single agent, in which case the agents form a complete hierarchy,
from the one who is envied by all the other agents to the one who is not envied by anyone else.
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satisfy no-envy, at least in a local sense.

Lemma 4: Suppose a∗ ∈ PF (E) and Assumptions 1 and 2 hold. ∀ϑ, ϑ′ ∈ Θ(β) there
exist some feasible individual allocations {a1(ϑ, ϑ′), a2(ϑ, ϑ′)}, such that, if Rank(ϑ) >
Rank(ϑ′), then a1(ϑ, ϑ′) �ϑ a∗ϑ′ %ϑ a2(ϑ, ϑ′) , a∗ϑ′ %ϑ′ a2(ϑ, ϑ′) �ϑ′ a1(ϑ, ϑ′).

Proof: Because a Pareto efficient allocation is feasible by definition, any allocation
c ∈ A(a∗ϑ) ∪ A(a∗ϑ′) is feasible. Also, due to the Pareto efficiency of a∗ and the fact
that ϑ′ envies the first-best allocation of ϑ, Lϑ′(a

∗
ϑ′) ∩ A(a∗ϑ) 6= ∅. Take an individual

allocation c inside this intersection and arbitrarily close to (and below) the indifference
plane of ϑ′ that passes through A(a∗ϑ′). Therefore, a∗ϑ′ �ϑ′ c. There are two possible
sub-cases to consider (the case of indifference is being ignored because it always possible
to move c slightly so that it falls under the following two cases).

Case a): c �ϑ a∗ϑ′ . In this case, let a1(ϑ, ϑ′) = c and a2(ϑ, ϑ′) = a∗ϑ′ and this
completes the proof. λβ(ϑ) allocations c and λβ(ϑ′) allocations a∗ϑ′ are feasible on
aggregate.

Case b): a∗ϑ′ �ϑ c. In this case, by LNCIP, it is possible to find an allocation d very
close to a∗ϑ′ such that: d �ϑ a∗ϑ′ and c �ϑ′ d. Because c is in the interior of A(a∗ϑ), it
is always possible to find such points (we could define distance ε and make sure that
Bε(c) ∩ Uϑ′(a∗ϑ′) 6= ∅, while Bε(d) ∩ Uϑ′(a∗ϑ′) = ∅, where Bε(c) is the open ball with
radius ε around c). Therefore, let a1(ϑ, ϑ′) = d and a2(ϑ, ϑ′) = c. λβ(ϑ) allocations d
and λβ(ϑ′) allocations c are feasible on aggregate. �

Lemma 4, provides pairs of feasible and incentive compatible allocations for any pair
of types ϑ, ϑ′ which are of different rank. However, feasibility is ensured under the
implicit assumption that the number of agents is equal across types. If this is not the
case, then additional restrictions on the interim distribution are required. This is the
role of Assumption 3. Specifically, the set {a1(ϑ, ϑ′), a2(ϑ, ϑ′)} in Lemma 4 is feasible
by construction whenever λβ(ϑ) = λβ(ϑ′). In case a) c �ϑ a∗ϑ′ , it is always possible
to find the desired allocations for any number of agents of the two types, since the
allocation which ensures incentive compatibility c is in the interior of A(a∗ϑ).

Case b) a∗ϑ′ �ϑ c, however, is problematic if λβ(ϑ) > λβ(ϑ′). In this case it
is feasible to provide λβ(ϑ) allocations of type c and λβ(ϑ′) allocations of type d. If
the ϑ-type agents are much more than the ϑ′-type agents, then there may be too few
allocations d in order to ensure that a(ϑ, ϑ′) �ϑ a∗ϑ′

12. Assumption 3 rules out those
cases by imposing restrictions on the number of agents who are envied. This is a joint
restriction on preferences and the interim-distribution.

Lemmas 3 and 4, along with the knowledge of the “social ranking” of the allocations,
allows us to construct a mechanism which makes it a dominant strategy for agents of
higher rank to report their type truthfully. The main idea is that, if the number

12The last condition is required for ensuring incentive compatibility. See also 4.3 for the necessity
of this condition for full implementation.
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of agents, who report a specific type is higher than the number who have this type,
according to the interim distribution, then they all receive an allocation, which the
“true” types prefer to the first-best allocations of the misreporting types, but the other
types do not prefer. This acts as an effective punishment for lies by those who envy
allocations of other types. Hence we use iterated elimination of dominated strategies to
prove the uniqueness of the proposed equilibrium. We construct this argument formally
in the proof of Proposition 1.

Proposition 1: Assume that the economy E, described in section 3, satisfies Assump-
tions 2 and 3. Then, for every allocation a∗ ∈ PF (E), which satisfies Assumption 1,
there exists a mechanism, for which a∗ is the unique Bayes-Nash equilibrium allocation
and agents report their private information truthfully.

Proof: The proof is done by construction. Let a∗ ∈ PF (E), which satisfies Anonymity,
and let a∗(θ) be the first-best allocation which is to be implemented for each type-profile,
with individual allocations ai = a∗i (ϑi, β), ∀i ∈ I. Also, let âϑ(a, ε) denote an individual
allocation in the ε-neighborhood of allocation a which is incentive compatible for type
ϑ, in the sense of Lemma 3, and let a1(ϑ, ϑ′), a2(ϑ, ϑ′) be individual allocations as
constructed by Lemma 4. Recall that λβ(ϑ) and λm(ϑ) is the number of agents of type
ϑ according to the interim distribution β and the received messages m, respectively,
and am is the minimum allocation, as defined in 4.1.

Each agent reports his type mi and a final allocation is received according to the
following mechanism M1(g, a):

i) If m ∈ Θ(β), then ai(mi,m−i) = a∗(mi, β), ∀i ∈ I.

ii) If m is such that for only two types, (ϑ, ϑ′), the number of reported agents is
different from the number of agents in the interim-distribution by one, specifically
λm(ϑ) = λβ(ϑ) + 1, λm(ϑ′) = λβ(ϑ′)− 1, then:

• If Rank(ϑ) = Rank(ϑ′), agents who reported types ϑ, ϑ′ choose an allocation
from the set {a∗(ϑ, β) − ε, a∗(ϑ′, β) − ε}. ε is strictly positive for all state-
contingent commodities and it is sufficiently small so that a∗(ϑ, β) − ε �ϑ
a∗(ϑ′, β) and a∗(ϑ′, β)− ε �ϑ′ a∗(ϑ, β).

• If Rank(ϑ) > Rank(ϑ′), agents who reported types ϑ, ϑ′ choose an allocation
from the set {a1(ϑ, ϑ′), a2(ϑ, ϑ′)}.
• If Rank(ϑ) < Rank(ϑ′), agents who report type ϑ′ receive allocation a∗ϑ′ and

agents who report type ϑ receive allocation
λβ(ϑ)

λm(ϑ)
a∗ϑ.

• For all mk 6= {ϑ, ϑ′}, ak(mk,m−i) = a∗(mk, β).

iii) For any other case, ai(ϑ,m−i) = âϑ(am, ε), ∀ϑ ∈ Θ(β).
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Under the mechanism above, it is a strictly dominant strategy for all agents with
types of rank(K) to report their type truthfully. To see this consider the different
beliefs of an agent of rank(K) (say i) about the messages that other agents will send. If
i believes that all other agents will report their type truthfully, then the best-response
for him is to report truthfully. This is because a∗(ϑi, β) �i a∗(ϑi, β) − ε, in the case

he reports another type of the same rank, and a∗(ϑi, β) �i λβ(ϑ′)

λm(ϑ′)
a∗(ϑ′, β), in case he

reports a type of lower rank.

If i believes that only one other agent will misreport, then i still prefers to report
his type truthfully, irrespectively of the rank of the other agent. Say that i believes
that j is of the same rank as him but of different type and that j will misrepresent
her preferences as being of type ϑi. If i reports that he is of type ϑj, then the two
lies will cover each other and i will receive a∗(ϑj, β). But if he chooses to report ϑi,
then λm(ϑj) = λβ(ϑj) − 1 and λm(ϑi) = λβ(ϑi) + 1. In the latter case, i chooses
one allocation from {a∗(ϑ, β)− ε, a∗(ϑ′, β)− ε}. Since a∗(ϑ, β)− ε is constructed to be
strictly preferred by i to a∗(ϑj, β), i strictly prefers to report truthfully.

The same argument holds if i believes that j is of type ϑj, which is of lower
rank than K, and that j will report ϑi. Note that, by the construction of the set
{a1(ϑi, ϑj), a2(ϑi, ϑj)} (see also Lemma 4), there are λβ(ϑi) + λβ(ϑj) individual alloca-
tions that are feasible. If one of the two allocations is requested more times than it is
feasible, then, in the game induced by i’s report: assign first the allocations in excess
supply to the agents who request them and then assign the rest of the agents randomly
to the remaining allocations. This ensures that there are no coordination failures and
all agents choose their most preferred allocation. Also, note that in both cases where i
believes that j misreports, i strictly prefers to report truthfully than to send any other
message ϑ 6= {ϑi, ϑj}, because, in the latter case, i receives âϑ(am, ε), which makes him
strictly worse-off.

In the case where i believes that multiple misrepresentations will take place, either
in types of rank(K), or in other ranks, then, irrespectively of his message, m 6= Θ(β) (if
all representations but one cancel out then we go back to the analysis of the previous
cases). This means that his message, alone, can not hide the fact that some agent(s)
misrepresents(misrepresent) her(their) type(s). His best response remains to report
truthfully: Ui(âϑi(a

m, ε)) > Ui(âϑ′(a
m, ε)), ∀ϑ′ 6= ϑi, by construction (recall that I×am

is feasible). We conclude that, under all possible beliefs, i strictly prefers to report
truthfully.

Given this, it is a best response for an agent of rank(K-1) to report his type truthfully
as well. Say that agent i, who is of rank(K-1), envies the allocation of some type ϑj
of rank(K). Of course, if i believes that some agent of type ϑj will report as being of
type ϑi, then the best response for i is mi = ϑj, but, as we showed, this cannot be an
equilibrium13. Hence, if i believes that all agents will report truthfully, he prefers to
report truthfully as well. If he believes that only one agent of the same or lower rank

13This argument also makes clear that our paper is not one of dominant strategy implementation,
as only rank(K) individuals have dominant strategies.
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will misreport their types as his own, he will still prefer to reveal his type truthfully, for
the same type of reasoning as in the case of an agent of rank(K). Finally, if he believes
that many agents will misreport their types, he still prefers to receive an incentive
compatible allocation (by construction) than misrepresenting his own type. Therefore,
given that rank(K) agents report truthfully, agents of rank(K-1) also report truthfully.

By induction, we conclude that for an agent of Rank(κ), if all agents of higher rank
are expected to report truthfully their types, his best-response is to report truthfully,
irrespectively of the actions of agents of the same or lower rank. Since it is a dominant
strategy for rank(K) agents to report truthfully, then, by iterated elimination of strictly
dominated strategies, the only possible equilibrium is when all agents report truthfully.
Therefore, the unique Bayes-Nash equilibrium of the mechanism is for all agents to
reveal their type and to receive the allocation a∗i (ϑi, β),∀i ∈ I. �

The result depends crucially on the fact that the rank of types is known. This is due
to the interim-distribution being common knowledge. On the other hand, Anonymity
ensures that agents do not gain any strategic benefit from their personal identity. For
instance, even if β is common knowledge, if different type-profiles result in different
ranks between types, then it may not be a dominant strategy for any agent to reveal
his type truthfully. As one’s rank, in this case, also depends on the realized types of the
other agents, there may be situations where an agent misreports his type in order to
force someone to misreport as well. This may cause multiplicity of equilibria. In other
words, if Anonymity fails, implementation is still possible, but full implementation may
fail.

The LNCIP is also required for the uniqueness of the equilibrium, as it allows for
agents to strictly improve their payoff if they report truthfully. Once again, if LNCIP
is violated, then one can still construct mechanisms which implement the first-best al-
locations, but the uniqueness of the equilibrium may not be possible. Therefore, the
common knowledge of the interim-distribution, Anonymity and LNCIP (along with
Assumption 3) are jointly sufficient conditions for full implementation of first-best al-
locations, but they are not necessary.

We would also like to comment on the advantages of our mechanism in comparison
to the existing literature (see for example, Jackson, 1991, Maskin, 1999). First, our
mechanism holds even with two agents (or even in the degenerate case of one agent).
Second, the required message space is minimal, since agents send messages only about
their own type. Third, we do not require any ad-hoc game, which has no equilibrium in
pure strategies (like an integer game), in order to rule out undesirable equilibria. This
is achieved by “enticing” some of the misreporting agents to report truthfully, whenever
there are multiple misrepresentations. Fourth, full implementation is also achieved if the
equilibrium concept is changed to iterated elimination of strictly dominated strategies,
which is, in fact, the solution concept we use in the proof of Proposition 1. Therefore,
our mechanism is not limited only to Bayesian implementation.

Finally, Assumptions 1,2 and 3 are relatively weak and there are many cases of
interest that comply with them. To demonstrate this, in 4.4, we provide some well-
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known examples of economies with hidden types and the solutions that our framework
provides. But first, we characterize the problem by providing necessary and sufficient
conditions for full implementation when the interim-distribution is common knowledge.

4.3 Full Implementation: Necessary and Sufficient Conditions

Condition 1: Suppose a∗ ∈ PF (E). ∀ϑ, ϑ′ ∈ Θ(β) such that a∗ϑ �ϑ′ a∗ϑ′ , ∃ a(ϑ, ϑ′) ∈
A such that: (i) aϑ(ϑ, ϑ′) �ϑ a∗ϑ′ , and (ii) a∗ϑ′ �ϑ′ aϑ(ϑ, θ′).

Proposition 2: Condition 1 is necessary for full implementation.

Proof: Full implementation of a∗ requires that g(m) = a∗ if mi = ϑi, ∀i ∈ I and that
the strategy profile mi = ϑi, ∀i ∈ I is the unique Bayes-Nash equilibrium. Consider
any direct mechanism M(g, a), which specifies some allocation a(m) 6= a∗, whenever m
is such that λm(ϑ′′) 6= λβ(ϑ′′) for some ϑ′′ ∈ Θ(β) (whenever this is the case, then, by
common knowledge of the interim-distribution, it follows that mi 6= ϑi for some i ∈ I).
Suppose that, apart from i (of type ϑ) and j (of type ϑ′), incentive compatibility is
satisfied for all other agents and that they report truthfully (this is done in order to
check the necessity of the condition).

Because Condition 1 is violated, then either part (i) or part (ii) of the condition
is violated (or both). This means that at least one of the following will hold: (i)
a(mi = ϑ,mj = ϑ,m−i,j) �j a∗ϑ′ , (ii) a∗ϑ′ �i a(mi = ϑ,mj = ϑ,m−i,j). In case
(i), truthful reporting is not equilibrium, because, if everyone else reports truthfully,
j’s best-response is mj = ϑ (incentive compatibility is violated for j). In case (ii),
there may be multiple equilibria because, if the truthful equilibrium exists, then so
does another equilibrium, where i reports type ϑ′ and j reports type ϑ. To see this,
notice that if i believes that j is of type ϑ′ and that mj = ϑ, then his best-response
is mi = ϑ′, in which case it is also a best-response for j to report mj = ϑ. Finally, in
the case where both parts of Condition 1 are violated, then there can be no truthful
equilibrium (as j strictly prefers to report ϑ, if everyone else reports truthfully), while
an untruthful equilibrium may exist, where i reports j’s type and vice versa. In all
cases, full implementation is impossible. �

Condition 1 is similar in spirit to Bayesian Monotonicity, which is necessary for full
implementation in economies with incomplete information (Jackson, 1991). In our
case, full implementation is possible, if there is a feasible allocation through which
some agent (i) “signals” cases of misreport. As a result, not all efficient allocations
are fully implementable when the interim-distribution is common knowledge. However,
Condition 1 holds whenever the number of agents of lower-rank are less or equal to the
number of agents of higher ranks. Assumption 3 in section 4.2 made this restriction
clear. On the other hand, Condition 1 is weaker than Assumption 3, and may hold in
cases where this assumption is violated.
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Note that Condition 1 is also sufficient for full implementation if one allows for
mechanisms with games that do not have an equilibrium in pure strategies (for example
integer games, as in Maskin (1999) or modulo games, as in Jackson (1991))14. This is
because one can rule out undesirable equilibria with multiple misrepresentations of
types (sub-case (iii) in the mechanism of Proposition 1) by making agents to play such
a game, whenever the message-profile differs from the interim-distribution by more than
one message. However, if one restricts attention to mechanisms where agents send only
messages about their types, the following condition is also required.

Condition 2: Suppose a∗ ∈ PF (E). There exists allocation an a ∈ A, such that
a∗ϑ �ϑ aϑ and aϑ �ϑ aϑ′ ∀ ϑ, ϑ′ ∈ Θ(β).

Condition 2 ensures that whenever there are more than one misrepresentations of types,
it is a best-response for one of the “liars” to deviate and report truthfully, while it is not
a best-response to deviate from truth-telling. It becomes apparent that Assumption 3
and the LNCIP satisfy Condition 1 (Lemma 4), while LNCIP also satisfies Condition 2
(Lemma 3). Jointly, Condition 1 and 2 are necessary and sufficient for full implemen-
tation for this restricted set of mechanisms when the interim-distribution is common
knowledge15.

4.4 Examples

Spence (1973)

The Spence economy consists of two types. Group I has low productivity a and its
proportion in the population is q1. Group II has high productivity a and its proportion
in the population is 1−q1. Acquiring y units of education costs y/a for Group I and y/a
for Group II. Productivity parameters are private information and firms hire workers
according to a wage schedule, based on verifiable educational attainment. The payoff
for an individual is the value of his wage minus the educational cost and for a firm the
productivity parameter minus the wage.

Spence argues that agents will acquire education (which does not increase produc-
tivity in his model) in order to signal their productivity to firms. In equilibrium, the
wage schedules are such that high productivity workers acquire some education and
credibly signal their type, while low productivity workers acquire no education, and
firms correctly infer that they are low productivity. The education acquired by Group
II is a deadweight loss, but necessary for credible signaling.

Assume that the total population N is common knowledge. Then Nq1 is the total
number of agents of Group I and N(1− q1) is the total number of agents of Group II.
Based on this, the following mechanism can separate types without any agent incurring
educational costs in equilibrium.

14See the Appendix for the proof. We omit it here, since it is similar to the proof of Proposition 1.
15See the Appendix for the proof.
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Let all workers report their type. If the number of agents who report Group I and
II is Nq1 and N(1 − q1), respectively, then agents who report Group I receive wage
wGI = a and those who report Group II, receive wage wGII = a. Otherwise, those who
report Group I receive wGI = a and those who report Group II, are asked to undertake
one unit of education and receive wGII = a+ ε, with 1

a
< ε < 1

a
(recall that a unit of

education costs 1
a

for high productivity workers and 1
a

for low productivity workers).
The above mechanism fully implements the first-best allocations in this economy.

First, consider the strategies of an a-type. It is clear that, irrespectively of the reports
of the other agents, it is a dominant strategy for her to report a, since a > a and
a + ε − 1

a
> a. Then, it is a best-response for an a-type to report truthfully as well.

This is because a > a + ε − 1
a
. Hence, all agents report truthfully in equilibrium and

acquire zero education. In Figure 2 contract a0 denotes the offer to high-productivity
workers when lies are detected.

W(y)

FBa2

1C

C

a

y

FBa1

1

2C

0a

a

Figure 2: Spence, 1973

Rotschild-Stiglitz (1976)

Consider the following, slightly modified, version of the Rothschild-Stiglitz economy.
There is a finite number of N risk-averse agents and one risk-neutral entrepreneur.
There is one commodity. Agents have a stochastic endowment with two possible states
wH and wL, with wH > wL. The entrepreneur has an endowment wE, which is subject
to no risk. An agent’s utility function depends on her consumption on both individual
states: U(cL, cH). There are two types of agents. K of them are of type 1 and face a high
probability of suffering from the low endowment state: pH . The remaining L = N −K
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are of type 2 and have a low probability of wL: pL < pH . Types are private information,
but the rest characteristics of the economy are common knowledge. Finally, assume that
wE is large enough so that, even if all other agents suffer from the low-endowment state,
they can still be fully insured by the entrepreneur’s wealth.

Assuming that the other side has full bargaining power and hence the entrepreneur
makes no profits from her services, the following mechanism can be utilized in order
to implement first-best allocations (see also Figure 3). All agents report their type. If
the message-profile matches the interim-distribution then each agent receives the insur-
ance contract that corresponds to her message (CFB

1 and CFB
2 are the state-contingent

allocations resulting from the first-best insurance contracts for 1 and 2 respectively).
Otherwise, agents who report type 1, receive an insurance contract which results to
allocation A1, while agents who report type 2, receive A2.

cL ZPL3
ο45

ZPL2

1U 2U
FBc2'1U

ZPLZPL1

FBc1
A1A1

A2

w

cH

Figure 3: Rothschild-Stiglitz, 1976

Notice that, by construction, A2 �2 CFB
1 �2 A1 and CFB

1 �1 A1 �1 A2.
Also, providing any combination of these individual allocations to the agents of the
economy is feasible, since they all lie in the interior of A(CFB

2 ). Therefore, Condition 1,
is satisfied. It is easy to check that it is a dominant strategy for type 2 to report truth-
fully. Given this, it is a best-response for any agent of type 1 to report truthfully, as
well. Therefore, the proposed mechanism has a unique Bayes-Nash equilibrium, which
is truthful.
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4.5 Robustness to Small Perturbations

So far we have assumed that the interim-distribution of types is commonly known with
perfect precision. This is a very strong assumption, and hence we would like to make
sure that small relaxations of it would not change our results dramatically. As it turns
out, if there is a sufficiently small noise about β, then our main claim still holds.

Let Γ be the set of all possible interim-distributions that can be generated by Θ.
By definition,

⋃
γ∈Γ Θ(β) = Θ. Suppose, now, that there is a small noise about the

probability of the interim-distribution. Agents have a probability distribution over the
set of interim-distributions. With probability 1−

∑
γ∈Γ

εγ, the interim-distribution β will

be realized, while εγ is the probability that some other interim-distribution γ will be
realized, with εγ > 0,∀γ ∈ Γ.

We maintain the assumption that each agent knows his own type with certainty but
has no information about the other agents’ type. The expected utility of agent i has to
be modified in order to include the uncertainty over the interim distribution:

Ui(a) = (1−
∑
γ∈Γ

εγ)
∑

θ−i∈Θ−i(β|ϑi)

[∑
s∈S

ui(a, s) π (s|ϑi,θ−i)
]
φ(θ−i|ϑi, β)

+
∑
γ∈Γ

εγ

[ ∑
θ−i∈Θ−i(γ|ϑi)

[∑
s∈S

ui(a, s) π (s|ϑi,θ−i)
]
φ(θ−i|ϑi, γ)

]

We also assume that for each γ ∈ Γ and for every ϑi there exists an individual al-
location a∗i (ϑi, γ) such that any I-collection of individual allocations is consistent with
γ, Pareto optimal and satisfies Anonymity. In other words, for every γ there is a set
of Pareto-optimal allocations to be implemented, each one corresponding to a specific
realization of a type-profile θ consistent with γ and Anonymity.

In the case of uncertainty about the interim distribution, the rank of each agent is
also uncertain, as different γ may correspond to different sets of realized types and dif-
ferent ranks. The problem then would be similar to the problem when the Anonymity
property is violated. However, if this uncertainty is sufficiently small, the equilibrium
strategies of agents will not change. To see this, consider an agent i who has the high-
est rank under β (and potentially other ranks for other γ’s). If he knows that β is
the interim distribution with certainty, then under the mechanism presented in 4.2, he
would strictly prefer to report his type truthfully than report any other type:

Ui(ϑi,m−i|β) > Ui(ϑ
′,m−i|β), ∀ϑ′ 6= ϑi ∈ Θ, ∀m−i ∈M

Adding a small uncertainty about the interim distribution means that his expected
utility by reporting his type truthfully becomes:

Ui(θi,m−i) = (1−
∑
γ∈Γ

εγ)Ui(ϑi,m−i|β) +
∑
γ∈Γ

εγUi(ϑi,m−i|γ)
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It is evident that, if εγ is sufficiently small for every γ, the expected utility of i ap-
proaches the expected utility under β and hence it remains a strictly dominant strategy
to report his type truthfully. The argument can be repeated for any other agent j of
different rank according to β. Given a sufficiently small vector of probabilities ε, j
expects all higher-rank agents to report truthfully and his best-response is to report
truthfully as well, irrespectively of the messages send by agents of the same or lower
ranks. Hence, there exists some vector ε, with strictly positive elements, such that the
equilibrium strategies under certainty over β remain the unique equilibrium strategies
under uncertainty over β.

Corollary 2: If the interim distribution of types is uncertain but there is a suffi-
ciently high probability that some distribution β will be realized, then the mechanism of
Proposition 1 fully implements the first-best allocations for every interim-distribution.

Proof: It follows from the analysis above.

It is noteworthy that, due to the fact that truthful revelation of one’s type is the
only equilibrium action for all agents, the desirable individual allocations will be im-
plemented for any interim distribution γ. In other words, the almost certainty about
β makes agents to report their type truthfully irrespectively of the interim distribu-
tion that is eventually realized. As a consequence, agents receive first-best allocations
for all realized interim-distributions. This confirms that our result is robust to small
perturbations of the information structure and it is not just a construction of perfect
knowledge of the interim distribution.

4.6 Convergence to Ex-Ante Distributions

So far we have shown our main result and that it is robust to small uncertainty about
the interim distribution. We also want to show that if the number of agents becomes
very large then the interim-distribution converges to the ex-ante distribution of types16,
in which case our informational assumptions converge to the widely used assumptions
in the standard mechanism design literature, i.e. agents know the ex-ante probability
of each type occurring. This allows us to relate our formulation and results to large
economies with adverse selection problems, and make the claim that in these economies,
because the interim-distribution is effectively common knowledge, one can implement
first-best allocations.

16As we have explained earlier, for our results to obtain we do not require that the interim distribution
converges to the ex ante distribution. We only need that the interim distribution converges to a unique
distribution, given the correlation between draws.
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Of course, this requires some restrictions on the joint probability function Φ. The
easiest way is to assume that types are independently and identically distributed. This
means that the probability of acquiring type ϑ, τ(ϑ), is the same across all agents and
the draws of types from the ex-ante distribution are uncorrelated. Then, by directly
applying the Weak Law of Large Numbers we get:

lim
I→∞

(
λβI (ϑ)

I

)
= τ(ϑ)

This is exactly the information provided by the interim-distribution: the number of
agents, for whom type ϑ has realized. Hence, at the limit, the relative frequency of
types in the population (interim-distribution) coincides with the ex-ante probability
distribution 17. Hence, our mechanism can be applied to economies with large pop-
ulations without requiring any additional information than the standard mechanism
design literature on asymmetric information and with minimal restrictions on the joint
probability function.

4.7 Participation Constraints

A final note is required regarding the issue of participation constraints. In many impor-
tant applications of adverse selection problems, agents are given the opportunity not
to participate in a contract or in a mechanism if the expected utility they anticipate by
entering is less than some exogenously given threshold. In our model, however, we have
completely ignored any participation constraint restrictions. Fortunately, this omission
does not result in loss of generality. If participation constraints are to be taken into
consideration, then this only restricts the points of the Pareto frontier that satisfy these
constraints and does not alter the rest of the analysis18.

17Notice, however, that other formulations of the Law of Large Numbers do not require independently
or identically distributed types. For example, suppose that the type generating process is an ergodic
Markov chain. Then, as the number of draws becomes infinitely large, the empirical distribution of
types converges to a unique distribution (see for example Grinstead and Snell, 1997). Clearly, in this
case, draws may be correlated, but, as long as the mechanism designer knows the transition matrix
of the Markov chain and assuming that all draws take place before the mechanism is played, then
the interim distribution can be estimated with arbitrary precision as the number of agents approaches
infinity. Generally, our mechanism can be applied in all cases where the interim distribution converges
to a unique distribution as the population becomes very large.

18Of course, in all interesting problems, the intersection of all participation constraints with the
Pareto-frontier is non-empty. Notice that, in off-the-equilibrium-path situations, the resulting allo-
cations may violate certain participation constraints. But as long as agents decide and commit on
their participation before the mechanism is played (based on the expectation of an outcome, which
results from some equilibrium of the sub-game), then the uniqueness and efficiency of the equilibrium
guarantees the participation of all agents.
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Conclusion

In this paper we consider a general hidden-type economy and, under relatively weak
conditions, we show that it is possible to construct a mechanism which has a unique
Bayes-Nash equilibrium, where all agents reveal their type truthfully and they receive
a first-best allocation. Our result relies on information aggregation and appropriately
chosen punishments. If the interim distribution is known (perfectly or imperfectly),
then one can aggregate the messages that all agents are sending out and uncover any
misreport(s), even if the identity of the liar is not known.

Truth-telling, however, requires appropriately designed punishments for lying. If
the punishment from detecting a lie is too severe, then some agents may deliberately
lie about their type in order to force other agents to also do so. The lies cancel out
in terms of the aggregate information and the former agents “steal” the allocations of
the latter, who are forced to lie under the fear of the extreme punishments. This can
lead to coordination failures and multiplicity of equilibria. Therefore, uniqueness of the
equilibrium requires a careful construction of the allocations when lies are detected. We
show that such punishments exist when the indifference curves of different types are
not locally identical, meaning that in the neighborhood of any allocation one can find
other allocations such that each type prefers one of these over the rest.

It should be stressed that we obtain our equilibrium by using iterated elimination
of strictly dominated strategies and, hence, it is also a Bayes-Nash equilibrium. This
contrasts with most of the existing papers, where the Bayesian equilibrium concept is
used. Furthermore, the assumption on the interim distribution of types being common
knowledge is needed because we consider general social choice sets. If we focus on
the implementation of specific allocations on the Pareto frontier so that allocations
depend only on one’s type, we can implement the first-best as a unique equilibrium
even if agents have heterogeneous beliefs or no information at all about the interim
distribution. Our mechanism can still implement the desirable allocation truthfully,
given that the social planner knows the interim distribution. This is because players’
best-response correspondences depend on their beliefs about how many misreports will
be detected by the mechanism and not on their ability to detect other agents’ lies.
Finally, an interesting question is whether the implementation of first-best allocations
in this setting can be achieved through a decentralized mechanism. We plan to address
this question in the near future.
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Appendix

Lemma 1: Let PF(E) be the Pareto Frontier of economy E. Then, for every allo-
cation a on the Pareto Frontier, there exists at least one agent i ∈ I, who does not envy
the allocation of any other agent: Ui(ai) > Ui(aj),∀j ∈ I.

Proof: Suppose that the claim does not hold. Then, all agents envy at least one other
agent: ∀ ai ∃ j ∈ I, j 6= i : Ui(aj) > Ui(ai). But, since this holds for all agents, then
there exists at least one reassignment of individual allocations among the I agents such
that some of them are made strictly better-off and the rest remain as well-off as under
a.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary
i ∈ I and let i = {j ∈ I : Ui(aj) > Ui(ai)}, be the set of agents whom i envies. Reassign
aj, for some j ∈ i, to i. If i ∈ j, then reassign ai to j and stop the reassignment. If
i /∈ j, then reassign some ah, h ∈ j to j and then proceed to agent h. Continue until you
reach some agent k, such that either i ∈ k or there exists some l ∈ k, whose allocation
al has already being reassigned. In the first case, reassign allocation ai to k and stop
the reassignments. In the latter case, ignore all reassignments preceding agent l (these
agents retain their original allocations), reassign to l the allocation ak and stop the
reassignments.

Since the set of agents is finite and all agents envy at least one allocation, after at
most I reassignments, the algorithm above will end-up in some agent, whose allocation
has already been reassigned, or the first agent, where reassignment started. In this case,
a reassignment of allocations has been found, which makes some agents in I better-off
(from agent l until agent k) while the rest remain equally well-off. This constitutes a
Pareto improvement and violates the initial assumption that a ∈ PF (E). �

Lemma 2: For every allocation a on the Pareto Frontier, there exists at least one
agent i ∈ I, whose allocation is not envied by any other agent: Uj(aj) > Uj(ai),∀j ∈ I.

Proof: The proof is similar to the proof of Lemma 1. Suppose that the claim does
not hold. Then, all agents are envied by at least one other agent: ∀ai ∃ j ∈ I, j 6=
i : Uj(ai) > Uj(aj). But, this implies that there exists at least one reassignment of
individual allocations among the I agents such that some of them are made strictly
better-off and the rest remain as well-off as under a.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary
i ∈ I and reassign ai to one of the agents in the set i = {j ∈ I : Uj(ai) > Uj(aj)}. Then
reassign aj. If i ∈ j, then reassign aj to i and stop the reassignment. If i /∈ j, then
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reassign aj to some arbitrary h ∈ j and repeat the reassignment. Continue until you
reach some agent k, such that there exists some l ∈ k, whose allocation al has already
being reassigned. Ignore all reassignments preceding agent l (these agents retain their
original allocations), reassign to l the allocation ak and stop the reassignments.

Since the set of agents is finite and all allocations are envied by at least one agent,
after at most I reassignments, the algorithm above will end-up in some agent whose
allocation has already been reassigned. In this case, we have found a reassignment of
allocations which makes some agents in I better-off while the rest remain equally well-
off. This constitutes a Pareto improvement and violates the initial assumption that
a ∈ PF (E). �

Corollary 1: If a ∈ PF (E), then Lemma 1 and 2 hold for any subset of I. Namely, let
Ǐ ⊆ I and let Ǎ = {ai : i ∈ Ǐ}. Then, if a ∈ PF (E), Lemma 1 and 2 hold for Ǐ with
regards to Ǎ as well.

Proof: Take any subset of agents Ǐ of the set I. Suppose that Lemma 1 and 2 do
not hold over the set Ǎ, which is the set of individual allocations of the agents in Ǐ.
Then, it is possible to find a reassignment of allocations between the agents in Ǐ, such
that some of them will be made better-off while the rest remain as well-off. But that
is a Pareto-improvement for some agents in I, which contradicts the assumption that
a ∈ PF (E). �

Lemma 3: If the LNCIP holds, then around the neighborhood of any individual
allocation ai, there exists a set of allocations such that each agent of a certain type
prefers a particular allocation over the rest.

Proof: Recall that Ciε(a) = {c ∈ A : Ui(c|ϑi,θ−i) = Ui(a|ϑi,θ−i), ‖c− a‖ < ε}.
Also, define Lj(ai) to be the lower-contour set of agent j associated with allocation ai:
Lj(ai) = {c ∈ A : Uj(c|ϑj,θ−j) < Uj(ai|ϑj,θ−j)} and Vj(ai) to be the upper-contour
set: Vj(ai) = {c ∈ A : Uj(c|ϑj,θ−j) > Uj(ai|ϑj,θ−j)}.

H is a L× S − 1 hyper-plane, which passes through ai, and is perpendicular to the
MRS of some type’s indifference curve, which also passes through ai. H splits the space
of allocations in two sub-spaces, A1 and A2. In each of these sub-spaces, and due to the
LNCIP, there exists some ε > 0 such that for every ε < ε, within the open ball Bε(ai),
the upper contour set of a type is a subset of the upper contour set of some other type
(see also the picture below).

Say that agent k is the type with the smallest upper contour set within ball Bε(ai)
and subspace A1: Vk(ai)

⋂
Bε(ai)

⋂
A1 ⊂ Vl(ai)

⋂
Bε(ai)

⋂
A1,∀l ∈ Θ. Then, there

exists some allocation b ∈ Bε(ai) such that ai is strictly preferred to b by agents of type k,

27



H

B

A1
A2

ai

Bε

b

c

Figure 4: LNCIP and Local Incentive Compatibility

but the agents of all other types strictly prefer b to ai: b ∈ Lk(ai) and b ∈ Vl(ai),∀l ∈ Θ.
Likewise, there exists allocation c, which does not belong in the two smallest upper

contour sets within Bε(ai) but it is within all the other upper contour sets, which means
that ai is strictly preferred by type k to b and c, b is strictly preferred by the type with
the second smallest contour set to ai and c and all the other types prefer c to ai and
b. By induction, one can construct Θ− 1 allocations in the ε-neighborhood of ai, such
that the agents of one type strictly prefer one allocation over all the other. �

Proposition 3: In the space of mechanisms, which permit sub-games with no equilib-
rium in pure strategies, Condition 1 is sufficient for full implementation.

Proof: Suppose that GI(P,A) is a simultaneous move game G : P → A with I players,
and assume thatG has no Nash equilibrium in pure strategies (examples include Jackson
(1991) and Maskin (1999)). Also, arbitrarily restrict the payoffs of GI such that the
maximum possible payoff for any type is lower than if he were to receive the first-best
allocation of any other type19. Let Ri(p−i, G) be the best-response correspondence of
agent i if game GI is played. Finally, suppose that Condition 1 is satisfied and that
the interim distribution of types, β, is common knowledge. The mechanism below fully
implements any Pareto efficient allocation which satisfies Anonymity.

19An easy way to do this is to multiple all payoffs of GI with an arbitrarily small but positive
number.
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Each agent reports his type mi and a final allocation is received according to the
following mechanism M(g, a):

i) If m ∈ Θ(β), then ai(mi,m−i) = a∗(mi, β), ∀i ∈ I.

ii) If m is such that for two types, (ϑ, ϑ′), the number of reported agents is different
from number of agents in the interim-distribution by one, specifically λm(ϑ) =
λβ(ϑ) + 1, λm(ϑ′) = λβ(ϑ′)− 1, then:

• If Rank(ϑ) = Rank(ϑ′), agents who reported types ϑ, ϑ′ choose an allocation
from the set {a∗ϑ − ε, a∗ϑ′ − ε}. ε is strictly positive for all state-contingent
commodities and it is sufficiently small so that a∗ϑ−ε �ϑ a∗ϑ′ and a∗ϑ′−ε �ϑ′ a∗ϑ.

• If Rank(ϑ) > Rank(ϑ′), agents who reported types ϑ, ϑ′ choose an allocation
from the set {aϑ(ϑ, ϑ′), aϑ′(ϑ, ϑ

′)}. a(ϑ, ϑ′) satisfies Condition 1.

• If Rank(ϑ) < Rank(ϑ′), agents who report type ϑ′ receive allocation a∗ϑ′ and

agents who report type ϑ receive allocation
λβ(ϑ)

λm(ϑ)
a∗ϑ.

• For all mk 6= {ϑ, ϑ′}, ak(mk,m−i) = a∗(mk, β).

iii) For any other case, the mechanism induces the game GI .

If more than one misreport is detected, M induces GI , which has no equilibrium20.
Therefore, there can be no equilibrium of the mechanism where agents believe that more
than two misreports will be detected. Conditional on that, it is a strictly dominant
strategy for the agents of the highest rank to report truthfully their type. To see
this, take agent i of type ϑ and suppose that his rank is K. Agent i’s only possible
equilibrium beliefs are that: either (i) all other agents will report truthfully or (ii) one
other agent will misreport or (iii) there will be multiple misreports but they will cover
each other (e.g. type ϑk reporting as type ϑl and vice versa) apart from one. Case (ii)
and (iii) are strategically equivalent for i as his response induces the same allocation.

If i believes that all other agents will report their type truthfully then his best
response is to report truthfully as well. Otherwise, he receives either the allocation
a∗ϑ − ε, if he misreports his type as of another type with equal rank, or the allocation
λβ(ϑ′)

λm(ϑ)
a∗ϑ′ , where ϑ′ is of lower rank than i. Clearly, i strictly prefers a∗ϑ to the above

allocations and his best response is to report his type truthfully.
If, on the other hand, i believes that an agent (say j of type ϑ′) of rank(K) will

misreport his type to ϑ, then by reporting truthfully he receives a∗ϑ−ε, while by reporting
type ϑ′ he receives a∗ϑ′ . By construction, a∗ϑ− ε �ϑ a∗ϑ′ . If i reports any other type then
his payoff will be even less due to the restrictions on the payoffs of GI . Hence, i’s best
response is to report truthfully.

If i believes that an agent (say m of type ϑ′′) of a lower rank will misreport his type
to ϑ, then a similar argument goes through. Reporting truthfully is strictly preferred

20More than one misreport detected means that either λβ(ϑ) 6= λm(ϑ) for more than two types or
that λm(ϑ)− λβ(ϑ) > 2 and λm(ϑ′)− λβ(ϑ′) 6 2 for some types ϑ, ϑ′.
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to reporting any other type, since aϑ(ϑ, ϑ′′) �ϑ a∗ϑ′′ . Finally, if i believes that some
agent m of type ϑm will misreport his type to ϑn, then i prefers reporting truthfully
and receiving a∗ϑ to reporting untruthfully and receiving some payoff induced by GI .

Hence, for all beliefs that can be consistent with equilibrium, all agents of rank
K strictly prefer to report their type truthfully. Given this and by following the same
reasoning, agents of rank(K−1) strictly prefer to report truthfully as well. By induction
and iterated elimination of strictly dominated strategies, we conclude that all ranks will
report truthfully and hence the unique Bayes-Nash equilibrium of the mechanism is for
all agents to report their type truthfully. �

Proposition 4: Condition 1 and 2 are jointly sufficient for full implementation.

Proof: Suppose that Condition 1 and 2 are satisfied and that the interim distribution
of types, β, is common knowledge. The mechanism below fully implements any Pareto
efficient allocation which satisfies Anonymity. Each agent reports his type mi and a
final allocation is received according to the following mechanism M(g, a):

i) If m ∈ Θ(β), then ai(mi,m−i) = a∗(mi, β), ∀i ∈ I.

ii) If m is such that for two types, (ϑ, ϑ′), the number of reported agents is different
from number of agents in the interim-distribution by one, specifically λm(ϑ) =
λβ(ϑ) + 1, λm(ϑ′) = λβ(ϑ′)− 1, then:

• If Rank(ϑ) = Rank(ϑ′), agents who reported types ϑ, ϑ′ choose an allocation
from the set {a∗ϑ − ε, a∗ϑ′ − ε}. ε is strictly positive for all state-contingent
commodities and it is sufficiently small so that a∗ϑ−ε �ϑ a∗ϑ′ and a∗ϑ′−ε �ϑ′ a∗ϑ.

• If Rank(ϑ) > Rank(ϑ′), agents who reported types ϑ, ϑ′ choose an allocation
from the set {aϑ(ϑ, ϑ′), aϑ′(ϑ, ϑ

′)}. a(ϑ, ϑ′) satisfies Condition 1.

• If Rank(ϑ) < Rank(ϑ′), agents who report type ϑ′ receive allocation a∗ϑ′ and

agents who report type ϑ receive allocation
λβ(ϑ)

λm(ϑ)
a∗ϑ.

• For all mk 6= {ϑ, ϑ′}, ak(mk,m−i) = a∗(mk, β).

iii) For any other case, an allocation ã, which satisfies Condition 2, is implemented.

The mechanism above is identical to the mechanism of Proposition 3, with the only
exception that, if more than one misreport is detected, then instead of inducing a game
without an equilibrium, the mechanism provides an allocation which is constructed
according to Condition 2. By construction of ã, all types prefer to report truthfully if
they believe that many misreports will be detected.
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Therefore, even if a rank(K)-agent believes that there will be several detections
of misreports, he still prefers to report truthfully. He also prefers to report truth-
fully than reporting any other type, if he believes that there is only one misreport
(aϑ(ϑ, ϑ′′) �ϑ a∗ϑ′′ �ϑ ãϑ′). Since his best-response remains the same for all other be-
liefs, this means that any agent of rank(K) has a strictly dominant strategy to report
truthfully. Therefore, by following the same reasoning as in the proof of Proposition
3 and by iterated elimination of strictly dominated strategies, we conclude that the
mechanism has a unique Bayes-Nash equilibrium, at which all agents report their type
truthfully. �
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