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Climate Change, Risk and Grain Production in China 
 

Abstract: 

This paper employs the production function-based method proposed by Just and Pope 

(1978, 1979) to explicitly analyze production risk in the context of Chinese grain farming 

and climate change, and test for potential endogeneity of climate factors in Chinese grain 

production. Our results indicate that grain production in south China might, at least in the 

short run, could be a net beneficiary of global warming. In particular, we find that a 1 °C 

increase in annual average temperature in South China could entail an increase of grain 

output by 3.79 million tons or an economic benefit of around USD 798 million due to the 

increasing mean output. However the impact of global warming in north China is 

negative, small and insignificant. In addition, Hausman tests reveal no endogeneity of 

climate variables in Chinese grain production. 

 

Keywords: Agriculture, grain production, climate change, production risk, China 

JEL Classification: Q1, Q54 
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1 Introduction 

Farmers usually have no knowledge of the precise output when they make their 

production decisions, mainly due to the fact that agriculture in general has a long 

production cycle and is affected by a large number of endogenous or exogenous 

uncertainty factors. The prevailing climatic conditions for instance are important sources 

of uncertainty. Factors such as temperature, precipitation or sunshine however are 

characterized by inter-annual variability, part of which can be explained by gradual shifts 

in mean conditions but another part is constituted by seemingly random fluctuations. The 

overall direction and magnitude of the inter-annual variations are beyond farmers’ control 

and their predictive capabilities as well. As a result, climate is not only an important 

determinant of the general suitability of any given region for agricultural production but 

also a source of substantial production risk, causing unexpected variability of output.  

In addition to climate-related risks, Just and Pope (1979) as well as Kumbhakar 

and Tsionas (2008) argue that the level of risk is also endogenously determined by the 

applied quantities of standard physical inputs, such as fertilizers and pesticides. Therefore, 

it is quite complicated to conduct risk analyses with respect to agricultural production. 

Even though risk analysis is a very important topic for agricultural production in 

China both from a policy and an academic perspective, most scholars so far have not paid 

appropriate attention to the risk aspect, in particular not to climate-related risks, and only 

focus on the deterministic contributions of inputs, such as land, labor, fertilizer, 

machinery and irrigation to output creation. Yu and Zhao (2009) provide a good review 

of the existing studies on agricultural production in China. However, with the exception 

of Zhang and Carter (1997), Wang et al. (2008), and Mendelsohn (2009), most studies 

have not explicitly considered climate factors in their analyses of the state and prospects 
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of Chinese agriculture. Specifically, Zhang and Carter (1997) take climate variables as 

normal inputs in production, whereas Mendelsohn (2009) studies the impacts of climate 

variables on farmers’ net revenues. However, the issue of production risk stemming from 

climate factors and standard physical inputs as well as farmers’ possibilities to adapt to 

this risk have, to our knowledge, not been well addressed in the present literature.  

The world climate is changing (IPCC, 2007; Shortle et al., 2009; Parry et al., 

2007), and the consequences of this are and also will be very significant. However, the 

studies on the impacts of climate change on agricultural production produce a multitude 

of different results. For instance, some studies find that an increase in temperature could 

benefit agricultural production in some developed countries, such as the US (Mendelsohn 

and Dinar, 2003; Deschênes and Greenstone, 2007; Shortle et al., 2009) and Germany 

(Lippert et al., 2009), while others conclude that global warming could harm agricultural 

production some developing countries in Africa and South America (Mendelsohn, 2009; 

Féres et al., 2008). Even though Mendelsohn (2009) also find that global warming could 

be harmful to Chinese famers in general, Wang et al. (2008) conclude that global 

warming is only harmfaul to non-irrigation farmers, but beneficial to irrigation farmers. 

In addition, Schlenker and Roberts (2006, 2009) indicate that the relation between 

temperature and corn yields is nonlinear: The impacts of increases in temperature on 

yields are positive in moderate temperature ranges, but quickly turn negative once 

temperatures exceed 30oC.  

 As shown in Figures 1 to 3, China is not spared from climate changes and its 

grain production to a considerable extent depends on the development of the regional and 

the global climate. Regressions of the climate variables against time furthermore find the 

increases in annual average temperature and annual average duration of sunshine depicted are 
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highly significant (Table 1). In addition, as a result of the country’s exposure to the East 

Asian monsoon, its climate and particularly precipitation patterns are already 

characterized by a high degree of variability (Tao et al., 2004), which frequently leads to 

floods and droughts (Smit and Cai, 1996). It is generally expected that climatic variability 

in terms of such extreme weather events will increase in the foreseeable future, except 

that mean climate conditions are also forecasted to change. Following a gradual warming 

over the past five decades, East Asia is expected to experience a further substantial 

increase in annual average temperatures until 2100 (IPCC, 2007). Moreover, some 

climate simulations also forecast an increase in total annual precipitation levels during 

that time period (Christensen et al., 2007). The latter could counteract the trend towards 

less precipitation observed over the past 50 years (Song et al., 2005).  

These changes will likely have profound impacts on Chinese agriculture in terms 

of both expected output and production risk. For instance, Mendelsohn (2009) shows that 

global warming  slightly reduces farmers’ revenues in China,  but Wang et al. (2008) 

conclude that global warming is only harmfaul to non-irrigation farmers, but beneficial to 

irrigation farmers. Wang et al.(2010) also give a comprehensive review for the impact of 

climate change on Chinese agriculture in which the results are inconclusive. The current 

lieterature in this field only focuses on the impact of mean temperature shifting, and the 

impact of the volatility is however neglected.  

Historical evidences have also shown that variations of agricultural production in 

China have increased the volatility of world food prices (von Braun et al., 2007) because 

a bad harvest year in China could force the country to import more food, which in turn 

pushes up the world market price. Hence, the study of the impacts of climate change on 
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agricultural production in China may hold important policy implications not only for 

China but for other countries as well.  

However, scientific evidence has also shown that agricultural production may 

impact climate through landscape changes, the application of chemical inputs, the use of 

fuel and electric energy and through carbon sequestration (Desjardins et al., 2007).  

Greenhouse gases (GHGs) represent one of the driving forces of climate change and two 

of the major sources of GHG emissions in agriculture are the large-scale application of 

synthetic nitrogen fertilizer, which particularly leads to the release of nitrous oxide into 

the atmosphere (Eickhout et al., 2006), and the increasing energy use, which is somehow 

responsible for the emission of large amounts of CO2. Since the first half of the 1990s, 

China is the world’s largest consumer of chemical fertilizer and ranks among the major 

producers. The national average quantity of fertilizer applied per hectare of farm land was 

nearly three times the world average (Wang et al., 1996, Yu and Zhao 2009). Another 

important GHG emitted in the course of agricultural production is methane, which is a 

byproduct of rice cultivation in flooded fields and of the digestive process of animals 

(Smith et al., 2007). The former of course is particularly relevant with respect to grain 

cultivation in China. In addition, forestry and agriculture are important tools for climate 

change mitigation. For instance, they are important carbon sinks. However, landscape 

change, in particular deforestation for the purpose of expanding agricultural land and the 

transformation of agricultural to non-agricultural land due to urbanization, decrease the 

potential carbon sequestration and could therefore contribute to changes in the regional 

and global climate. The above considerations would imply that climate factors might be 

endogenous variables in agricultural production. In the current literature on the impact of 
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climate factors on agricultural production in China, such as in Zhang and Carter (1997), 

this aspect has however not been tested for. If the climate variables are endogenous, the 

estimation results in current literature would be inconsistent. 

Hence, following the above considerations, the main objectives of this paper are 

(1) to analyze how climate change and the related risks affect grain production in China 

and (2) to test whether climate change is indeed endogenous given the possible feedback 

between agriculture and climate. We use a data set for a panel of 26 Chinese provinces 

comprising variables relevant for grain production and climate information from 1985 

through 2007, which is a time period that is long enough to observe changes in climatic 

conditions.  

  

2 Models and Estimation Approaches 

2.1 Background of models 

In the current literature, either the production function or the Ricardian approach 

is used to estimate the economic impacts of climate change. The Ricardian approach 

including climate factors and other exogenous variables as regressors, which aims at 

analyzing the determinants of the productivity of farmland, is particularly prevalent 

because less data are required. The variables representing the productivity of farmland in 

the current literature include land rent (Lippert et al., 2009), land value (Féres et al., 

2008), and net revenue (Mendelsohn et al., 2003; Mendelsohn, 2009) and profit 

(Deschênes and Greenstone, 2007; Wang et al. 2008) per unit of land. However, there are 

some unobserved heterogeneities in error terms when using the Ricardian method, for 

example some inputs (e.g. fertilizers), landscape, or soil quality (Deschênes and 
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Greenstone, 2007), which can be correlated with climate variables. This causes 

endogeneity problems in regressions and  hence leads to inconsistent estimation. 

 Furthermore, the agricultural land in China is equally distributed to farmers and 

there is no open market for farmland, so that neither rents nor values of farmland can be 

observed in China. Even though Wang et al. (2008) use Ricardian Methods with farmers’ 

net income as dependent variables, some important variables such as the land prices or 

rent, and food prices are not included which may cause bias in estimation. Hence, we 

decide to use the production function approach. While Deschênes and Greenstone (2007) 

indicate that farmers’ adaptations to climate change are constrained in the production 

function approach, which may bias the estimates with respect to climate change, this 

approach has the benefit that we can use it to study the impacts of climate-related risks on 

agricultural production in China, and provides some insights for the impacts of climate on 

food security directly in a short run as well. This is particularly important because the 

issue of risk has not been well studied in the current literature on agricultural production 

and climate change in China. 

 In addition, the borders between Ricardian approaches and production function 

approaches are not clear-cut. Broadly speaking, the Ricardian methods proposed by 

Mendelsohn et al. (2003), Mendelsohn (2009) and Deschênes and Greenstone (2007), 

which use net revenues or profits per unit of land as measures of productivity, can be 

considered a special case of the production function approach. In our real world, farmers 

cannot predict the weather conditions for the whole cropping season at the stage of 

planting, so that the production costs might not be a function of weather conditions. In 
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that case, the model of Deschênes and Greenstone (2007) would just degenerate to the 

model of Mendelsohn et al. (2003) and Mendelsohn (2009): 

(1)           ( )V f x=  ,                    

where V is the net revenue per unit of land and x is a vector of exogenous variables, 

including  climate variables, which determines the net revenues or, more generally, the 

land productivity. If we would include the input variables as independent variables in 

equation (1), it would exactly be a production function with constant returns to scale.  

 

2.2 Base Model 

In this study, we employ a Cobb-Douglas production function because this specification 

has been found to be a reasonable empirical approximation of production processes in 

many parts of the economy, including agriculture, and has thus frequently been used for 

research on agricultural production (e.g. Hayami, 1969; Dawson and Lingard, 1982; 

Echevarria, 1998; Hu and McAleer, 2005; Armagan and Ozden 2007). The basic model is 

thus specified as: 

(2)  0
1

ln ln
K

it k kit
k

y xα α
=

= +∑ , 

where ity is the grain output in region i at time t , kitx is the input quantity of factor k  in 

region i at time t , and jα , 0,1, ,j K=  , are the parameters to be estimated.  

As the production function is specified in a log-linear way, the coefficient 

estimates for jα on this stage will be elasticities of output with respect to the respective 

input factors.  
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First, we estimate aggregate Chinese grain production considering only a set of 

standard physical inputs, which includes the land area under cultivation, the irrigated 

area, labor, fertilizer as well as the use of machinery.  

However, as aforementioned, production risks are doubtlessly present in most 

parts of agricultural production. They can be assumed to take the form of 

heteroskedasticity in the production function (Just and Pope, 1979). Consequently, a 

fixed effects estimator, which would usually be appropriate if the sample consists of large 

and heterogeneous geographical entities like the Chinese provinces, would yield 

inefficient though still consistent coefficient estimates. If additionally a first-order 

autoregressive process is present in the error terms, this will cause further inefficiency 

with respect to the estimates of an FE regression (Wooldridge, 2002). In order to remedy 

both issues on this first stage of the analysis, a feasible generalized lest squares estimator 

(FGLS) will be employed instead (Wooldridge, 2002). 

On the second stage, we acknowledge the conjecture that the model used so far 

might not be correctly specified since it does not include climate variables, which are 

however of critical importance regarding the output of grain. Following Zhang and Carter 

(1997), we consequently proceed by estimating a weather and input production function 

that includes both the first and second central moments of temperature, precipitation and 

sunshine in the same way as regular input factors. Given the issues of heteroskedasticity 

as a result of inherent production risk and serial correlation, we might again resort to an 

FGLS approach.  

 

2.3 Endogeneity 
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An important precondition for the consistency of the fixed-effects estimator is that all 

independent variables are strictly exogenous. While it will be assumed for the moment 

that this condition is satisfied, it cannot be ruled out at this point that the included climate 

variables are endogenous as a result of the possible feedback influences of agricultural 

production on climate change mentioned above. We are concerned about the endogeneity 

of climate variables both from an econometric and from a policy perspective. If climate 

variables are endogenous, the estimation results would not be consistent. Furthermore, 

agricultural policies should in that case take the feedback effects of agriculture on climate 

into account. 

A Hausman test (Hausman, 1978) is being employed to test for potential 

endogeneity of the climate variables in our model. It determines whether the estimation 

results of a fixed effects estimator are significantly different from those obtained using an 

instrumental-variable (IV) estimator1

 

. If the null hypothesis of there being no difference 

between the estimators is rejected, the IV estimator would be preferred; otherwise, the 

estimator of the fixed-effects model is preferred. 

2.4 Risk Analysis 

Just and Pope (1978, 1979) suggest that production risks can take the form of 

heteroskedasticity in the production function. They furthermore point out that many 

common specifications of production functions, which do not specifically consider risk, 

are characterized by the strong constraint that they only allow the variance of output to be 

always positively correlated with inputs which is obviously unrealistic. Following Just 

                                                           

1 We use one-year and two-year lags as instruments respectively. 
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and Pope (1978, 1979), we develop a non-linear fixed-effects panel data model to 

separately analyze each input factor’s marginal contribution (considering both standard 

and climate inputs) to the mean of output as well as to production risk. Based on Just and 

Pope’s generalized production function, our model is specified as follows: 

(3)  0 0
1 1

exp( ln )  ln  
it

K M

it k kit m mit
k m

y x xα α ε β β
= =

= + + +∑ ∑ , 

where ity , kitx and kα have the same definition  as in equation (1), mitx denotes a factor 

which can influence the risk level and mβ is the corresponding coefficient. 
it

ε  in turn is a 

stochastic disturbance term following the standard normal distribution. 

 Thus, we find that the expected output (often also referred to as mean output) and 

the variance of output are determined by separate functions, which can algebraically be 

denoted as 0
1

( ) exp( ln )
K

it k kit
k

E y xα α
=

= +∑  and 0
1

( ) ln
M

it m mit
m

V y xβ β
=

= +∑ , respectively. 

Drawing on the above assumption that production risk in this framework takes the form 

of heteroskedasticity in the production function, the second term on the right-hand side of 

equation (3) can also be interpreted as a heteroskedastic error term for the purpose of 

estimation.  

Just and Pope (1979) proposed a three-step method for estimating the non-linear 

Just-Pope model, which will be applied with some modifications for panel-data models in 

estimating equation (3): (1) Non-linear least squares estimation of the mean output 

function, (2) estimation of the risk function using a fixed-effects model, and (3) re-

estimation of the mean output function utilizing a generalized non-linear least squares 

model.  
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China’s provinces are usually considered to be quite heterogeneous in terms of 

geographical features, climate regimes, economic development and other aspects. If these 

heterogeneities should have a significant impact on grain production, it would necessitate 

to specify the models of stages (1) and (3) of the above procedure as fixed effects models 

by including a dummy variable for each province, which in turn would result in a 

significantly better fit to the data. An F-test comparing the regressions with and without 

province dummies on stage (3) will be informative with respect to the necessity of this 

approach.  

 However, since one of the defining heterogeneities in Chinese agriculture, the 

climatic difference between the country’s subtropical south and its temperate northern 

part, is likely to make a difference with respect to the impact of climate change, as shown 

by Wang et al.(2008), we want to specifically analyze to what extent the marginal 

contributions of standard physical and climate inputs to mean output and to production 

risk differ between the two regions. We therefore split the sample into northern and 

southern provinces and separately apply the Just-Pope procedure to those subsamples. 

We also again test for the necessity of including province dummies into the regressions. 

 

2.5 Impact Analysis 

Another important matter is to calculate the costs or benefits of climate change 

because this holds very important policy implications, which is underlined by the fact that 

many current studies are concerned with this question.  From our production function, 

equation (3), we can calculate the shadow prices of climate variables as follows: 

(4)     ( )
c y

E yw p
c

∂
=

∂
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               * ( )y
c

p E y
c

α= ,  

where wc is the shadow price of climate variable c (e.g. annual average temperature), E(y) 

is the expected output and py is the output price. αc in turn represents the estimated output 

elasticity with respect to the climate factor c, which in our case is obtained from the mean 

production function of the Just-Pope procedure (stage 3). This equation thus quantifies 

the economic impacts of a marginal change in climate.  

 

 

3 Data 

A data set for a panel of 26 Chinese provinces comprising variables relevant for 

grain production and climate information from 1985 through 2007 is used to carry out the 

analyses in this paper. The main variables regarding grain production include yearly 

observations of grain output2

Except for the land area under cultivation, the available input data generally 

represent aggregate input use regarding all subsectors of a province’s agricultural 

production. In order to approximate the province-specific quantities of labor, fertilizer 

, cultivation area, rural labor, irrigated area, machinery use 

as well as chemical and energy inputs, while the data on climate consist of monthly 

observations with respect to temperature, precipitation and sunshine. The data set is 

constructed from various issues of the China Statistical Yearbook (National Bureau of 

Statistics of China, 1986-2008).  

                                                           

2 Aggregate grain output measured by weight, as reported by the National Bureau of Statistics of China 
(NBS), consists of the individual output quantities of the different varieties of rice, wheat, corn, sorghum, 
millet, tubers and beans. The total weight of harvested tubers (net of the share recorded as vegetables) has 
been converted by the NBS to grain-equivalent output by assuming that five kilograms of tubers are 
equivalent to one kilogram of  the other grains (National Bureau of Statistics of China, 2008). 
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and machine power as well as the size of the irrigated area used for the production of 

grain, the total input quantities have been multiplied with the share of the grain cropping 

area in total cropland, which entails the simplifying assumption of equal input use per 

unit area of land for all crops. In the cases of labor and machinery, we furthermore 

acknowledge that these inputs are also substantially used in agricultural sectors other than 

crop cultivation. Consequently, we adjust them a second time by also multiplying them 

with the share of crop output value in total agricultural output value.  Similar adjustment 

procedures have also been applied by Zhang and Carter (1997) and Lin (1992) 

respectively.  

For each of the above climate factors, we construct variables representing their 

first and second central moments. First moment variables are the annual averages of 

temperature and duration of sunshine as well as total annual precipitation. With respect to 

the second moment variables, we first calculate the deviation of each of the monthly 

observations regarding each climate factor (temperature, precipitation and sunshine) from 

the respective month’s linear growth trend over the period from 1985 through 2007, as 

we assume farmers in China might have some ability to adapt to climate changes. Next, 

we sum up the deviations of each climate factor within any given year and use these sums 

as proxies for the variability of climate that farmers cannot predict when they make their 

input decisions.  

 

4 Estimation Results and Discussion  

• Model Comparison 
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    The regression results of the above multi-stage analysis are presented in Tables 2 

and 3, which include 9 econometric models: Model I is a standard fixed-effects panel 

model without inclusion of climate variables; Model II uses Feasible GLS estimation for 

the fixed-effects model without climate variables, which is an improvement over Model 1 

because testing shows that the error terms in Model I are serially correlated; Model III 

yields the Feasible GLS estimator for the fixed-effects model including climate variables; 

and Models IV-IX are the estimation results of the Just-Pope models previously described. 

Each of them features a mean production function and a risk function. 

 F-tests reject the null-hypothesis of there being no significant difference between 

the provinces based on the full sample of provinces as well as based on the northern and 

southern sub-sample. The corresponding F-ratios are 9.59 (p-value: 0.000), 9.57 (p-value: 

0.000) and 9.10 (p-value: 0.000), respectively. Therefore, irrespective of the sample 

chosen, the introduction of province dummies is warranted.  

In particular, comparing the results of the mean production functions in Model III   

and Model Va, we find that in both models the coefficients of all physical input factors 

are significant. However, labor is only weakly significant in Model III while it is highly 

significant in Model Va. With respect to climate influences, Model III finds total 

precipitation, average duration of sunshine and the deviation of temperature to be highly 

significant. Model Va in turn yields only a weak significance for total precipitation and a 

high level of significance for the deviation of temperature. The variables representing 

annual average temperature and the deviations of precipitation and sunshine are not 

statistically significant in either model.  
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As we know, the Just-Pope model is superior to the approaches in Models I-III 

because it explicitly captures risks in production, which play crucial roles in agriculture. 

The coefficients of the other models, which do not analyze risk factors, may mix up the 

contributions to mean output and to production risk. Hence, the Just-Pope model is our 

preferred approach. 

The patterns of agricultural production in South China are substantially different 

from those in the north. The main grain in South China is rice and usually more than one 

cropping season is possible in this part of the country, while the main grain in North 

China, where usually only one cropping season is possible, is wheat. Agricultural 

scientists   found that rice prefers high temperatures, a high-humidity and short durations 

of sunshine, while wheat grows better under long durations of sunshine and a 

relatively dry weather. In order to capture the structural differences between South and 

North China, we also estimated the Just-Pope model separately for each of these two 

regions. The corresponding results are reported in Table 3 and given the above 

considerations, the following discussions will focus on models VII (subsample of 

northern provinces) and IX (subsample of southern provinces), both of which are 

specified with dummy variables representing the provincial different. 

• Mean Production Function  

Regarding the marginal contributions of the standard physical input factors to the 

mean of output, we find land to be of crucial importance. Based on our preferred Just-

Pope models, it features an output elasticity of 0.5105 for the north of the country (Model 

VIIa) and 0.8259 for the south (Model IXa). Both results are significant at the 1%-level. 

Compared to land, the magnitude of all other estimated coefficients is rather small. The 
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considerably higher output elasticity with respect to land can be explained by the fact that 

land has become the most serious constraint to a further expansion of grain cultivation in 

China because the possibilities for increasing the acreage are widely exhausted and in 

some regions, the arable land, in particular the most fertile land, is even shrinking as a 

result of increasing urbanization and growing burdens on the environment causing soil 

degradation and desertification (Smit and Cai, 1996).  

Fertilizer and Machinery also positively and significantly contribute to grain 

production in the north and south of China, though to varying degrees as it comes to the 

estimated output elasticities. Specifically, the estimation results of the Just-Pope model 

show that the output elasticity with respect to fertilizer is 0.163 in the north and 0.0884 in 

the south. Both results are statistically significant at the 1% level. As aforementioned, 

China features one of the most fertilizer-intensive agricultural sectors in the world. 

Nevertheless, the small marginal contributions of fertilizer obtained here are still positive. 

The output elasticities with respect to machinery are 0.1578 and 0.1537 in the north and 

the south respectively and are also statistically significant at the 1% level. In China, the 

agricultural land is equally distributed among farmers and each farmer operates on small 

and often fragmented plots of land. Consequently, large-scale machinery can often not be 

used, which in turn causes small-scale machinery to be much more prevalent. As a result, 

the marginal effects of machinery are unsurprisingly small as compared to the output 

elasticity with respect to land but still significant.  

However, an incremental in agricultural labor even has a much smaller impact on 

marginal output in the Northern provinces, whereas the corresponding effect in the south 

is somewhat larger than that of machinery. Particularly the result for the north seems to 
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be in accord with the finding of Bowlus and Sicular (2003), who conclude that some 

regions in rural China are characterized by a considerable labor surplus. It thus makes 

sense that the output elasticity with respect to labor is, with a point estimate of only 

0.0407, very small.  

With respect to the area under irrigation we find the impacts in North China to be 

contrary to those in the south of China. Model VIIa yields positive and significant output 

elasticity with respect to irrigation for the Northern provinces. Thus, despite the fact that 

Northern China is less richly endowed with water resources than the south, expanding 

irrigation systems, which in some northern regions are at least in part fed by groundwater, 

can obviously still have a positive impact on grain production, even though it has already 

been observed that the continued use of groundwater for irrigation purposes has led to a 

drastic lowering of the ground water table in some regions, like the North China Plain 

(Smit and Cai, 1996). However, for the subsample consisting only of the southern 

provinces we find a small but highly significant negative marginal impact on mean 

output, which could be explained by the circumstance that water, especially due to higher 

levels of precipitation, is much more abundant in the south of China than it is in the 

north.. 

 Turning now to the impacts of climate factors on the mean of output, we find a 

positive and significant output elasticity with respect to the annual average temperature 

for the southern provinces but no significant result for the northern half of the country. It 

is plausible that a small increase in temperature in south China can significantly increase 

the output of rice, which is the predominantly grown grain in that region, but does not 

have the same impact on wheat, which dominates in North China, as wheat prefers lower 
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temperatures than rice. In particular, we find the elasticity of output with respect to 

temperature in the south to be 0.2642, which, together with the fact that we find small 

negative and insignificant impact for the north, indicates that China in general might 

benefit from higher annual average temperatures. The results are consistent with Wang et 

al.(2008) in which global warming is beneficial to irrigation farmers but mildly harmful 

to non-irrigation farmers. This would ceteris paribus make China a net beneficiary of 

global warming. Similar results have for example been found for the USA (Shortle et al., 

2009; Deschênes and Greenstone, 2007; Mendelsohn and Dinar, 2003) and Germany 

(Lippert et al., 2009).  

Drawing on the results just described and using equation (4), we can calculate the 

economic benefit of global warming with respect to grain production in South China. 

Given an average temperature of 18.7oC3 in the capital cities of China’s 14 southern 

provinces in 2007, a grain output of 267,8 million tons4 in that part of the country  so that 

the marginal output of temperature will be 3.786 million tons of grains. Given an average 

grain price of 1.598 yuan/kg5

Tw =

, the shadow price of temperature in South China is: 

 CNY 6.05 billion  

     ≈  USD 798 million6

which implies that the benefit of a global warming of 1 °C accruing to grain production 

in South China would have a value of  USD 798 million

,  

7

                                                           

3 Source: China Statistical Yearbook 2008, Tables 11-13 (National Bureau of Statistics of China, 2008). 

. Table 4 presents the values of 

4 Source: China Statistical Yearbook 2008, Tables 12-2 (National Bureau of Statistics of China, 2008). 
5 Source: Shandong Development and Reform Commission, 
http://www.sdjw.gov.cn/show.asp?type=zwgk&id=228 
6 Exchange rate: USD 1 = CNY 7.581127 (2007). 
7 Based on the estimates for the full set of provinces, the corresponding value would be USD 631.8 
million. However, this result is insignificant. 
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ceteris paribus marginal changes in all considered climate variables for China as whole as 

well as for North and South China separately. 

 The estimated coefficients of the total precipitation regarding the north and the 

south are very close. They amount to 0.044 and 0.047, respectively. However, only in the 

case of South China the result is statistically significant, which again might be caused by 

differences in crop structure because rice is very sensitive to changes in water availability, 

whereas wheat  is less sensitive in this respect. 

 With respect to our second central moment climate variables, only the variability 

measure of temperature turns out to be positive and significant in the case of the Northern 

provinces. At first glance, this result is contrary to common wisdom because strong or 

frequent positive or negative deviations from average temperatures, leading to heat waves 

or frost events, should subject crops to adverse heat stress and thereby reduce mean 

output. However, it can also be argued that a certain degree of climatic variability within 

a year can increase the output of many crops. Particularly winter wheat, which is 

common in Northern China, is known to benefit from such variability as it needs a cold 

period of limited duration in order to flower properly in spring. 

 For the south of China we find the elasticity of output with respect to the 

variability measure of precipitation to be -0.0356, which is statistically significant at the 

5%-level, whereas the output elasticity of the variability measure of the duration of 

sunshine is significant at the 10%-level and features a coefficient of 0.0431. This could 

be explained by the fact that rice not only prefers a climate characterized by high 

humidity but also short periods of sunshine. 
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• Risk Function 

 Our analyses of production risk in Chinese grain farming by means of Just and 

Pope’s procedure (Models VIIb and IXb for the northern and southern provinces, 

respectively) reveal that agricultural machinery in South China is the only physical input 

factor, which is associated with a significant risk elasticity. We attribute its risk-

decreasing impact to the fact that the use of machinery allows for a more efficient and 

speedy execution of many tasks in agriculture, which should reduce farmers’ exposure to 

risks for example stemming from adverse weather events during the harvest season or 

from pest or fungal infestations. 

 Climate factors also turn out to significantly affect production risk in Chinese 

grain farming. However, we again only find this for the southern provinces. The risk 

elasticity with respect to the deviation of precipitation from the long-term average in this 

region of the country is strongly positive and highly significant. Again we explain this by 

the fact that rice, which is the predominant grain in South China, needs a high-humidity 

climate and in particular a steady water supply. Hence fluctuations of precipitation are 

not good for rice production as they could increase the level of production risk in rice 

cultivation.  

Furthermore, we find a significant risk-decreasing marginal effect of the deviation 

of the duration of sunshine from its long-term average in the case of South China. Again 

this might be rooted in the fact that rice prefers short periods of sunshine, so that a higher 

degree of variability in this climate factor might decrease production risk stemming from 

overly long exposures to sunshine (i.e. solar radiation).   

• Endogeneity 
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Finally, for the reasons discussed earlier, we are concerned about the possible 

endogeneity of climate variables in the present context both from an econometric and 

from a policy perspective.  We therefore separately use one-year and two-year lags of the 

climate variables as instruments to estimate Equation (1) with climate variables included. 

Hausman tests (Hausman, 1978) however cannot reject the null hypothesis of there being 

no systematic difference between the fixed-effects model and the two IV regressions 

respectively for all provinces, Southern Provinces and Northern Provinces. Consequently, 

the climate variables can be considered to be exogenous factors in Chinese grain 

production. In the light of this, we conclude that climate change is affecting grain 

production in China while the feedback effects of agriculture are not significant. 

Methodologically, the tests ensure that the estimation results of the fixed-effects model 

and the Just-Pope model are consistent, so that the above discussions are legitimate.   

   

5 Conclusions 

 This paper has contributed to the current literature in several ways. We have used 

the most recent data available to determine the marginal contributions of a range of 

standard physical input factors to grain production in China. Furthermore, we have used 

climate data to analyze output elasticities with respect to both first and second central 

moment variables of temperature, precipitation and sunshine. After that we have used the 

method developed by Just and Pope (1978, 1979) to separately determine each input 

factor’s marginal contribution to mean output and to production risk. Lastly, we tested for 

the potential endogeneity of climate variables with respect to Chinese grain cultivation. 
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 Our results have several implications for Chinese agricultural and climate-related 

policies. Since additional land for agricultural production, which has the highest output 

elasticity, is severely constrained in China, the government has to resort to other more 

readily available measures to promote an expansion of output. Even though their 

marginal contributions are not very large as compared to land, based on the 

responsiveness of output, increasing the use of labor, irrigation, fertilizer and agricultural 

machinery all seem to be promising strategies both in the north and the south of the 

country. However, further increments in the application fertilizer could have adverse 

impacts on the environment (e.g. by polluting the ground water) and increasing the 

cultivation area under irrigation might in some regions also be a questionable strategy 

because it would put additional pressure on already constrained water resources, thereby 

potentially reducing the efficiency of all irrigation systems in that region. In any case, 

neither of these input factors features a positive and significant marginal contribution to 

production risk, which would be an argument against increasing the use of an input 

factor. 

 The main results with respect to the influences of climate and its change over time 

are that China might actually be a net beneficiary of the projected changes in climate in 

the short run. Particularly an increase in annual average temperatures will at the margin 

have a positive impact on mean output in South China, while an increased deviation of 

temperature will benefit the north of the country. Furthermore, no temperature-related 

variable has a significant impact on production risk. The role of an increase in 

precipitation, which is expected in the future, is somewhat less clear. Higher levels of 

total annual precipitation will benefit the southern provinces in terms of mean output but 
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have no significant impact on grain production in China’s northern regions.  

Consequently, even though the deviation of precipitation from its long-term average has a 

significant risk-increasing effect, we arrive at the conclusion that China should be able to 

keep up its food production in the near future and, drawing on our earlier calculations, 

expect that the country, stemming from benefits in South China, might even be able 

realize an economic benefit of around USD 798 million from a 1 °C increase in annual 

average temperature. We attribute the difference between South and North China mainly 

to the different crop structures in the two regions of the country. It is well known that rice, 

which is the predominantly grown grain in South China, prefers a climate characterized 

by high temperatures, high humidity levels and short durations of sunshine, whereas 

wheat, which is the main crop in North China, prefers lower temperatures and a rather 

dry climate.  Our results are highly consistent with the current literature, for example 

Wang et al (2008). 

Since all our results represent marginal effects and thus pertain only to the short-run and 

since it also known that all crops feature certain ranges of climate conditions, in which 

they can grow optimally, a continued change in these conditions might eventually lead 

China to a point where the net benefits from climate change may turn negative.  

Our approach of testing for a potential endogeneity of climate factors reveals that climate 

change is an exogenous factor in Chinese grain production, which implies that the 

feedback effects of Chinese grain cultivation on climate are not significant. Eventually 

the finds in this study will have insightful implications for Chinese agricultural policy 

making.  
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Figure 1: Changes in Annual Average Temperatures in China over Time 
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Source: Own calculations; Data: National Bureau of Statistics of China, 1985-2008 
Figure 2: Changes in Total Annual Precipitation Levels in China over Time 
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Source: Own calculations; Data: National Bureau of Statistics of China, 1985-2008 
Figure 3: Changes in Annual Average Durations of Sunshine in China over Time 
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Source: Own calculations; Data: National Bureau of Statistics of China, 1985-2008 
Table 1: Regressions of Major Climate Factors on their Respective Linear Time Trends 
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All provinces Northern provinces Southern provinces
Model i ii iii
Dependent variable Anual average temperature Anual average temperature Anual average temperature
Linear time trend 0.0712 0.0646 0.0660

(36.52)*** (21.84)*** (26.48)***
Constant 13.1112 8.6350 17.1432

(469.42)*** (204.36)*** (478.88)***
Observations 620 288 332
R-squared 0.68 0.63 0.68
Number of Provinces 26 12 14
Model iv v vi
Dependent variable Total annual precipitation Total annual precipitation Total annual precipitation
Linear time trend 0.3291 -0.6388 0.1767

(1.09) (-1.43) (0.24)
Constant 876.9335 469.3259 1243.9280

(203.36)*** (73.58)*** (119)***
Observations 620 288 332
R-squared 0.00 0.01 0.00
Number of Provinces 26 12 14
Model vii viii ix
Dependent variable Annual average sunshine Annual average sunshine Annual average sunshine
Linear time trend -0.5816 -0.5843 -0.5054

(-19.94)*** (-11.34)*** (-10.29)***
Constant 175.1702 206.1763 147.2677

(418.92)*** (280.11)*** (208.67)***
Observations 620 288 332
R-squared 0.39 0.31 0.24
Number of Provinces 26 12 14  
Source: Own calculations 
Data: National Bureau of Statistics of China, 1985-2008 
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Table 2: Analysis of Chinese Grain Production (Part 1) 
Model I II III IV a IV b V a V b

Production Function Production Function Production Function
Mean Function Risk Function Mean Function Risk Function

(FE) (FGLS) (FGLS) (NLS) (FE) (NLS) (FE)
Dependent Variable ln (grain output) ln (grain output) ln (grain output) adj. grain output production risk adj. grain output production risk

Area 0.8470 0.7112 0.7043 0.8447 0.6403 0.9216 -0.3749
(20.00)*** (18.68)*** (20.96)*** (31.13)*** (1.64)* (21.03)*** (-0.86)

Labor 0.0325 0.0912 0.0378 0.0041 -0.1243 0.0964 -0.4077
(1.93)* (4.14)*** (1.78)* (0.22) (-0.81) (2.89)*** (-2.38)**

Irrigation 0.0220 0.0211 0.0547 0.0337 -0.2268 -0.0523 0.2274
(1.45) (1.73)* (4.00)*** (4.28)*** (-1.63) (-2.77)*** (1.46)

Machinery 0.2457 0.0926 0.0788 -0.0556 -0.1479 0.1336 -0.1145
(11.76)*** (3.72)*** (3.38)*** (-3.29)*** (-0.74) (7.51)*** (-0.51)

Fertilizer 0.1256 0.1870 0.2243 0.3094 0.6215 0.1513 0.1812
(7.23)*** (7.64)*** (9.32)*** (18.38)*** (3.84)*** (8.20)*** (1.00)

Average temperature 0.0588 0.0606 -0.3621 0.0920 -0.9523
(1.56) (1.83)* (-0.51) (1.41) (-1.21)

Total precipitation 0.0687 0.1446 0.0444 0.0297 -0.1397
(4.26)*** (6.76)*** (0.22) (1.77)* (-0.63)

Average sunshine -0.0918 -0.0204 0.5917 -0.0406 0.5212
(-2.76)*** (-0.67) (1.24) (-1.16) (0.98)

Temperature deviation 0.0468 0.0931 -0.3120 0.0404 -0.3204
(3.77)*** (4.54)*** (-2.23)** (2.89)*** (-2.05)**

Precipitation deviation -0.0118 0.0019 -0.0428 -0.0079 0.3254
(-0.89) (0.09) (-0.29) (-0.61) (1.95)*

Sunshine deviation -0.0076 -0.0906 -0.1736 -0.0182 -0.2672
(-0.43) (-3.70)*** (-0.97) (-1.09) (-1.34)

Constant -2.1254 -0.6686 -0.7564 -1.6865 -0.1256 -2.3113 9.2160
(-6.59)*** (-3.83)*** (-2.49)** (-5.59)*** (-0.03) (-4.76)*** (1.82)*

Observations 552 552 551 551 551 551 551
R-squared 0.677 0.98 0.05 0.99 0.04
Number of Provinces 26 26 26 26 26 26 26

J-P Method (All prov., no dummies) J-P Method (All prov., incl. dummies)

 
Source: Own calculations 
Data: National Bureau of Statistics of China, 1985-2008 
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Table 3: Analysis of Chinese Grain Production (Part 2) 
Model VI a VI b VII a VII b VIII a VIII b IX a IX b

Mean Function Risk Function Mean Function Risk Function Mean Function Risk Function Mean Function Risk Function
(NLS) (FE) (NLS) (FE) (NLS) (FE) (NLS) (FE)

Dependent Variable adj. grain output production risk adj. grain output production risk adj. grain output production risk adj. grain output production risk

Area 0.5349 -3.7373 0.5105 -0.6304 0.9753 -0.2532 0.8259 -0.3793
(13.19)*** (-3.05)*** (5.51)*** (-0.59) (21.91)*** (-0.44) (16.17)*** (-0.48)

Labor 0.0535 0.0737 0.0407 -0.0307 -0.0792 0.4214 0.2126 -1.1837
(2.82)*** (0.4) (2.36)** (-0.19) (-1.84)* (0.65) (3.89)*** (-1.34)

Irrigation 0.1941 1.4080 0.2216 0.6825 0.0300 -0.1601 -0.0629 0.2319
(5.61)*** (2.58)*** (3.28)*** (1.44) (4.36)*** (-1.24) (-3.6)*** (1.33)

Machinery 0.0232 0.4324 0.1578 -0.1038 0.0956 -0.0122 0.1537 -0.6541
(0.87) (1.04) (3.96)*** (-0.29) (4.56)*** (-0.06) (6.71)*** (-2.25)**

Fertilizer 0.3458 0.3395 0.1630 -0.2302 0.1349 0.2571 0.0884 0.2868
(19.66)*** (1.09) (3.71)*** (-0.85) (5.91)*** (1.39) (4.1)*** (1.15)

Average temperature -0.2066 -1.0512 -0.0869 -0.5869 0.1116 0.4103 0.2642 -2.2633
(-3.99)*** (-1.06) (-0.8) (-0.68) (1.61) (0.26) (2.58)*** (-1.05)

Total precipitation -0.1204 0.0571 0.0441 0.3322 0.1021 -0.2335 0.0473 -0.2425
(3.47)*** (0.18) (1.52) (1.19) (3.81)*** (-0.91) (2.16)** (-0.70)

Average sunshine 0.1748 1.0029 -0.0075 -0.8414 -0.1174 0.2909 -0.1080 0.6452
(2.38)** (1.12) (-0.09) (-1.08) (-3.86) (0.53) (-3.07)*** (0.87)

Temperature deviation 0.1276 -0.4931 0.0436 0.0296 0.0070 -0.1589 0.0062 -0.2610

(4.88)*** (-2.2)** (1.91)* (0.15) (0.29) (-0.86) (0.36) (-1.04)
Precipitation deviation 0.0031 -0.0507 -0.0043 -0.2315 0.0087 0.0312 -0.0356 0.6832

(0.11) (-0.21) (-0.2) (-1.08) (0.39) (0.17) (-2.13)** (2.77)***
Sunshine deviation -0.1360 -0.0099 -0.0378 -0.1017 0.0363 -0.0649 0.0431 -0.5948

(-4.17)*** (-0.03) (-1.41) (-0.41) (1.22) (-0.28) (1.84)* (-1.91)*
Constant -1.3744 18.6042 -0.4507 11.8394 -2.2563 3.7563 -2.4107 20.7504

(-2.26)** (1.74)* (-0.5) (1.27) (-5.61)*** (0.53) (-4.38)*** (2.18)**

Observations 247 247 247 247 304 304 304 304
R-squared 0.99 0.12 0.96 0.04 0.99 0.03 0.98 0.09
Number of Provinces 12 12 12 12 14 14 14 14

J-P Method (North, no dummies) J-P Method (North, incl. dummies) J-P Method (South, no dummies) J-P Method (South, incl. dummies)

 
Source: Own calculations 
Data: National Bureau of Statistics of China, 1985-2008 
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Notes on Tables 2 and 3 
 
Absolute value of t statistics in parentheses: Models I, IV-XV 
Absolute value of z statistics in parentheses: Models II-III 
 
Logarithmic independent variables: Models I-III, IVb, Vb, VIb, VIIb, VIIIb, IXb 
Non-logarithmic independent variables:Models IVa, Va, VIa, VIIa, VIIIa, IXa 
 
 
 
 
 
 
 
 
Table 4: Benefits of marginal changes in the different climate variables (ceteris paribus) 

Output elasticity Benefit (billion yuan) Output elasticity Benefit (billion yuan) Output elasticity Benefit (billion yuan)
Annual average temperature 0.092 4.79 -0.0869 -2.88 0.2642 *** 6.04
Total annual precipitation 0.0297 * 0.03 0.0441 -0.03 0.0473 ** 0.02
Annual average sunshine -0.0406 -0.19 -0.0075 -0.01 -0.108 *** 0.34
Temperature deviation 0.0404 *** 2.73 0.0436 * 1.29 0.0062 0.23
Precipitation deviation -0.0079 -0.02 -0.0043 -0.01 -0.0356 ** -0.03
Sunshine deviation -0.0182 -0.05 -0.0378 -0.05 0.0431 * 0.06

Nation North China South China

 
Assumed grain price: CNY 1.598/kg 
 
Source: Own calculations 
Data: National Bureau of Statistics of China, 1985-2008
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