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Abstract

Estimation of threshold parameters in (generalized) threshold regression models is
typically performed by maximizing the corresponding profile likelihood function.
Certain Bayesian techniques based on non-informative priors have also been devel-
oped and are widely used. This article draws attention to finite-sample settings (not
rare in practice) in which these standard estimators perform poorly or even fail. In
particular, if estimation of the regression coefficients is associated with high uncer-
tainty, the profile likelihood for the threshold parameters and thus the corresponding
estimators can be strongly affected. We suggest an alternative regularized Bayesian
estimator that circumvents the deficiencies of standard estimators in small sam-
ples. The new estimator can be obtained employing the empirical Bayes paradigm
and, hence, requires little additional numerical effort compared with commonly used
estimators. Simulations confirm excellent finite sample properties of the suggested
estimator, especially in the critical settings. The practical relevance of our approach
is illustrated by two real-data examples already analyzed in the literature.

Key words and phrases: empirical Bayes, nuisance parameter, threshold estimation.

1 Introduction

Modeling a response variable as a linear combination of some covariates with regression

coefficients that vary between (possibly several) regimes is known as threshold regres-

sion. The choice of regime is determined by a transition function which depends on a

transition variable as well as a threshold parameter. Transition functions can be either
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smooth (Van Dijk et al., 2002, provide a comprehensive overview) or step functions. In

the following, we restrict attention to the latter. In principle, the response variable can

follow any distribution from the exponential family. However, such generalized threshold

regression models have only recently been formally introduced by Samia and Chan (2011)

and most of the literature on threshold regression deals with models with piecewise lin-

ear mean. In this article we concentrate on generalized regression models with regimes

controlled by a step transition function and refer to such models as generalized threshold

regression models. Generalized threshold regression models are employed in a wide range

of different fields of application. Hansen (2011) provides an overview of the extensive use

of generalized threshold regression models in economic applications including e.g. models

of output growth, forecasting, and the term structure of interest rates or stock returns.

Samia et al. (2007) employ a generalized threshold regression model to analyze plague

outbreaks and Lee et al. (2011) complement these applications with examples in finance,

sociology, and biostatistics among others.

Threshold estimation in generalized threshold regression models is typically performed in

two stages: the estimation of the regression coefficients is followed by the maximization

of the profile likelihood for the threshold parameters using a grid search, as the likelihood

function is not differentiable with respect to the threshold parameter. This estimation

procedure has two intrinsic problems. First, the profile likelihood is not defined for thresh-

olds that leave fewer observations in one of the regimes than are necessary to estimate

the regression coefficients. Hence, in practice it is unavoidable to restrict the domain of

the threshold parameters depending on the dimension of the regression coefficients. The

literature offers arbitrary constraints including one observation per dimension of the re-

gression coefficient (Samia and Chan, 2011) or 15% of the observations (Andrews, 1993)

to give just two examples. This restriction can be problematic in small samples, especially

if the true threshold is close to the boundary of its domain. The second problem is due
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to the direct impact of the uncertainty inherent in the regression coefficients’ estimates

on the profile likelihood for the threshold parameters. In an unfavorable setting the pro-

file likelihood becomes jagged with multiple extrema, increasing the uncertainty of the

threshold estimator. Large variance of the regression coefficients’ estimator is again likely

to be found in small samples and for the true threshold at the boundary of its domain,

but also if the signal-to-noise ratio is low or the residual variance is misspecified (overdis-

persion in the generalized regression setting). We are not aware of any work that points

out these deficiencies of the common threshold estimator even though the problematic

settings frequently occur in empirical applications. Macro-economic data are often only

available for a small sample, e.g. if observations correspond to different countries. Spatial

arbitrage modeling is another example (Greb et al., 2011).

Bayesian methods are also popular to estimate thresholds. In the literature, a Bayesian

threshold estimator is typically based on non-informative priors; we refer to it as the non-

informative Bayesian estimator. For the case of a threshold regression model with piece-

wise linear mean, Yu (2012) shows that, regardless of the choice of priors, Bayesian thresh-

old estimators are asymptotically efficient among all estimators in the locally asymptot-

ically minimax sense. However, in the critical small sample settings described above,

the non-informative Bayesian estimator shares all the drawbacks of the profile likelihood

estimator and can completely fail in certain cases, as we discuss in Section 3.2.

In this article, we suggest an alternative threshold estimator, which we call the regular-

ized Bayesian estimator. Contrary to previous work on estimation in threshold regression

(Samia and Chan, 2011; Yu, 2012), we focus on the estimator’s performance in critical

small sample situations. Simulations confirm that it yields good results even in settings

in which profile likelihood and non-informative Bayesian estimator are highly susceptible

to faults. To summarize the intuition behind this new estimator: If regression coeffi-

cients were known, none of the problems outlined above would exist. This suggests that
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stabilizing their estimates might help to prevent them from distorting the threshold esti-

mates. In addition, regularization of regression coefficient estimates allows us to obtain a

posterior density which is well-defined on the entire domain of the threshold parameters.

We achieve regularization by a particular specification of priors. While it proves to be

beneficial in the critical small sample situations, the choice of priors does not have an im-

pact asymptotically (as Yu, 2012, shows for a threshold regression model with piecewise

linear mean and independent observations). We further derive an explicit (approximate)

expression of the posterior density, which allows us to utilize existing functions for mixed

models in standard software to easily compute the estimator.

The rest of this article is organized as follows. We specify the generalized threshold re-

gression model in the second section. In the third section, we review existing threshold

estimators and point out their deficiencies. The regularized Bayesian estimator is intro-

duced in the fourth section. In the fifth section, we briefly look at inference about the

threshold parameter. Simulation results are presented in the sixth section. We use the

last section to discuss two empirical applications. The appendix contains some technical

details.

2 Model

Observations
(
yi,X

T
i , qi

)
∈ R × Rp × R, i = 1, . . . , n, are assumed to be realizations

of random variables that follow a generalized threshold regression model with threshold

parameter ψ ∈ R, regression coefficients β1,β2 ∈ Rp and scale (or dispersion) parameter

φ ∈ R+, that is

µi = E
(
yi|XT

i , qi
)

= h(ηi) (1)

where h is a known one-to-one function, the inverse of the link function g = h−1, and

ηi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2, (2)
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with I(·) as the indicator function. Moreover, conditional on the design vector XT
i and

the transition variable qi, the response variables yi are independently drawn from an

exponential family distribution with density

f(yi|ψ, φ,β1,β2) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (3)

characterized by known functions b and c together with the natural parameter θi = θ(µi).

Above and in the following, the same symbol denotes both a random variable and its

realization; the context should eliminate ambiguities. To use matrix notation, we define

vectors µ, η, y, q, I(q ≤ ψ) and I(q > ψ) by stacking µi, ηi, yi, qi, I(qi ≤ ψ) and

I(qi > ψ), respectively, and create an n× p matrix X with rows XT
i , i = 1, . . . , n. With

diag {I(·)} the diagonal matrix with entries I(·) along the diagonal and β = (βT1 ,β
T
2 )T ,

we can write

η = diag {I(q ≤ ψ)}Xβ1 + diag {I(q > ψ)}Xβ2 = X1β1 +X2β2 = Xψβ.

We consider generalized threshold regression models with one threshold to keep the expo-

sition simple; extension to generalized threshold regression models with more thresholds

is straightforward.

Naturally, our model covers yi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2 + εi, εi ∼ N (0, σ2)

and i = 1, . . . , n. This is by far the most frequently encountered generalized threshold

regression model in the literature. It is broad enough to comprise the popular threshold

autoregressive model in which the transition variable qi is an element of X i (Tong and

Lim, 1980; Tong, 2011, for a review of the development of the model).

Depending on the assumptions on the data generating process, model (1) – (3) can have

different asymptotic behavior. A first differentiation regards the transition variable qi.

Change point models are characterized by deterministic qi = i, while for threshold models

qi is a random variable which follows any continuous distribution. This is reflected in

distinct limit likelihood ratio processes and, hence, asymptotic behavior of the maximum
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likelihood estimators for ψ in the two models. The limiting likelihood ratio process involves

a functional of random walks for change point models and of compound Poisson processes

for threshold models. Check Bai (1997) for more details on the asymptotic properties

in the former, and Samia and Chan (2011) for the limiting behavior of the profile log-

likelihood and the asymptotic distribution of the profile likelihood threshold estimator

in the latter case. If the transition variable coincides with one of the covariates and the

regression function is continuous at the threshold, least squares estimates are known to be

normally distributed (for threshold models, see Chan and Tsay, 1998; Feder, 1975, treats

change-point models), which simplifies inference. Clearly, once the data is sampled, the

estimation procedure in both change point and threshold models is the same. Referring

to a threshold regression model with piecewise linear mean, Hansen (2000) points out

that “if the observed values of qi are distinct, the parameters can be estimated by sorting

the data based on qi, and then applying known methods for change point problems”.

However, as the focus of this article is on estimation problems that arise in small samples,

we do not further differentiate models. In the real-data examples, we concentrate on

discontinuous threshold models since they are frequently encountered in applications and

have not been studied as extensively as change point models due to their more intricate

limiting behavior.

3 Commonly used threshold estimators

3.1 The profile likelihood estimator

As noted in the introduction, the prevalent threshold estimator in the literature is the

profile likelihood estimator, see e.g. Samia and Chan (2011) or Hansen (2000). Split-

ting all model parameters into a parameter of interest and nuisance parameters, the

profile likelihood function Lp is constructed from the likelihood function L by replac-

ing nuisance parameters with their maximum likelihood estimates at given values of
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the parameter of interest. In generalized threshold regression models, our parameter

of interest is the threshold parameter ψ and its domain is restricted to a random set

Ψ =
{
ψ ∈ R|q(1) ≤ ψ ≤ q(n)

}
⊆ R, where q(i) denotes the ith order statistics. The nui-

sance parameters are βT ∈ R2p and φ ∈ R. Hence, we work with the conditional profile

likelihood function given X and q,

Lp(ψ) =
n∏
i=1

f(yi|ψ, φ̂ψ, β̂ψ) = exp

[
n∑
i=1

{
yiθ̂i − b(θ̂i)

φ̂ψ
+ c(yi, φ̂ψ)

}]
,

where θ̂i = θ ◦ h(η̂i) = θ ◦ h
{
I(qi ≤ ψ)XT

i β̂1ψ
+ I(qi > ψ)XT

i β̂2ψ

}
and β̂ψ and φ̂ψ are

maximum likelihood estimators at a fixed ψ. In the following, we assume a canonical link,

that is, θi = ηi. All developments still hold approximately if this assumption is not given.

We denote the profile log-likelihood with `p(ψ) = logLp(ψ).

To measure the proximity of a threshold ψ to the boundary of its domain Ψ, we introduce

d(ψ) = min(j, n− j)/p with j such that q(j) ≤ ψ < q(j+1). d(ψ) quantifies the distance

between ψ and Ψ’s boundary in terms of the number of observations between them relative

to the dimension of the regression coefficients, p = dim (βk), k = 1, 2. When d(ψ) = 1,

ψ assigns at least p observations to each of the regimes. The allocation of 5% of the

observations into one of the regimes can be expressed as d(ψ) = 0.05 n/p. Clearly, Lp(ψ)

is not defined for d(ψ) < 1, since in this case ψ does not leave enough observations for

the estimation of βk in one of the regimes. Hence, in practice it is inevitable to restrict Ψ

to Ψ∗(c) = {Ψ| d(ψ) > c} for some c ≥ 1. In the literature different heuristic suggestions

for the choice of c have been proposed. For example, Hansen and Seo (2002) propose

c = 0.05 n/p, we find c = 0.15 n/p in Andrews (1993) and Samia and Chan (2011) even

use c = 0.25 n/p for their application.

The profile likelihood threshold estimator is then given by

ψ̂pL = argmax
ψ∈Ψ∗(c)

Lp(ψ).

This definition based on the restricted domain Ψ∗(c) immediately suggests that in settings
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Figure 1: For a sample run corresponding to setting 1C of Section 6, `p(ψ) is shown on
the left, log pnB(ψ|y,X, q) in the middle and log prB(ψ|y,X, q) on the right.

in which d (ψ0) < c for a true threshold ψ0, ψ̂pL is inconsistent. The left panel of Fig. 1

illustrates this showing the profile log-likelihood for a sample run of a generalized threshold

regression model corresponding to the simulation setting 1C detailed in Section 6. If

Ψ∗(1) = [0.3, 0.7] would be restricted any further, e.g. to be [0.31, 0.69], then the true

threshold ψ0 = 0.3 would be excluded from the threshold domain and ψ̂pL would move to

the next extremum. For small n, large p and ψ0 close to the boundary of Ψ, d (ψ0) < c

is likely to be the case. Altogether, subjective restriction of the threshold domain is an

undesirable property of threshold estimation based on the profile likelihood.

The same plot in Fig. 1 also exemplifies that in certain small-sample settings the pro-

file (log-)likelihood can be jagged and have multiple extrema, leading to a very variable

threshold estimator. To shed light on this behavior of `p(ψ), we contrast it with its

analogue for known β. Accordingly, we compare

−`p(ψ) ∝ − 2

φ̂ψ

n∑
i=1

{yiθ̂i − b(θ̂i)} ≈ (ẑ −Xψβ̂ψ)TW (ẑ −Xψβ̂ψ)

with its analogue for known β. Here, ẑ = Xψβ̂ψ + G(y − µ̂) is the working variable,

G = diag {g′(µi)} and W−1 = diag {φb′′(θi)g′(µi)2}. The estimated W for fixed ψ is

assumed to vary little or not at all as a function of the mean so we use W evaluated at

the true β directly. This is a typical assumption in the literature on generalized linear

models. The same applies to G. We focus on the case of ψ ≤ ψ0, but the same arguments
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hold for ψ > ψ0. Denoting z = Xψβ +G(y −µ), X [ψ,ψ0] = diag{I(ψ < q ≤ ψ0)}X and

H = W 1/2X2(XT
2WX2)−1XT

2WX [ψ,ψ0], both of which disappear for ψ = ψ0, we find(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
= (z −Xψβ)T W (z −Xψβ) +Op(2p) (4)

+
{

(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}
H(β1 − β2) (5)

+
{

2(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}T
Op
(
W 1/2

√
varXψβ̂ψ

)
(6)

where Op (2p) is bounded in probability for fixed p and n → ∞; var(Xψβ̂ψ) is a row

vector containing the diagonal elements of Xψ(XT
ψWXψ)−1XT

ψ . Taking a closer look at

(ẑ−Xψβ̂ψ)TW (ẑ−Xψβ̂ψ) as a function of ψ, we note that replacing the true regression

coefficients β by their maximum likelihood estimators influences (z−Xψβ)TW (z−Xψβ)

in several ways. The Op-term in (4) is independent of ψ and simply shifts the profile

likelihood by a constant. The deterministic term in (5) equals zero for ψ = ψ0, but starts

growing as |ψ − ψ0| increases. That is, even if there is no uncertainty due to estimation

of β, that is, var(β̂ψ) = 0, the true least squares is inflated for ψ away from ψ0, making

the extremum less pronounced. The most important term is the last one in (6). This

random term depends on var
(
Xψβ̂ψ

)
and can have a strong deforming effect on the

true least squares even for ψ close to ψ0. Large variance of β̂ψ is associated with settings

characterized by small n relative to p, but can also be due to low signal-to-noise ratio,

model misspecifications (e.g. overdispersion) or if the threshold is close to the boundary

of its domain. This is exposed in the left as compared with the middle plot of Fig. 2; the

log-likelihoods depicted in these plots belong to models which only differ in one aspect:

in the plot on the left-hand side, the residual standard deviation is 0.75, while in the

middle plot it is 1.5. Clearly, the log-likelihood in the middle plot is highly distorted over

the whole range of Ψ, triggering multiple extrema and a highly variable estimator for ψ.

Moving the true threshold closer to the boundary, as shown in the right plot of Fig. 2,

leads to an even stronger deformation of the log-likelihood. In summary, in small samples

and particular settings exemplified above, the profile likelihood threshold estimator can
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Figure 2: Sample (log) profile likelihood functions `p(ψ) for different settings.

perform poorly, being very sensitive to inappropriate estimates of the nuisance parameters

and relying on a subjective restriction of its domain.

3.2 The Bayesian estimator

For threshold estimation in regression models with piecewise linear mean, there is a long

tradition of using Bayesian techniques in applied work beginning with Bacon and Watts

(1971) and including Geweke and Terui (1993) among many others. This popularity can

be at least partially attributed to practical advantages, since the Bayesian approach of-

fers a natural framework for inference and accounts for the variability of the nuisance

parameters. The theoretical properties of Bayesian threshold estimators in certain gener-

alized threshold regression models have been investigated by Yu (2012). He shows that

for independently and identically distributed observations Bayesian threshold estimators

are asymptotically efficient among all estimators in the locally asymptotically minimax

sense and strictly more efficient than the maximum likelihood estimator. In a related

paper, Chan and Kutoyants (2010) examine asymptotic properties of Bayesian estimators

in threshold autoregression models. They note that the limit variance of the Bayesian

estimator is smaller than that of the maximum likelihood estimator.

Without any prior knowledge of possible parameter values, it is natural to assume a

uniform prior for the threshold parameter and non-informative priors for the regression
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coefficients; these choices are (almost) omnipresent in the Bayesian literature on general-

ized threshold regression models with piecewise linear mean. While the priors do not have

an impact asymptotically, it turns out that they do affect the performance of the Bayesian

threshold estimator in finite samples. We show that non-informative priors can distort

estimates, especially in small samples. It is straightforward to obtain an approximation of

a generalized threshold regression model’s posterior density pnB(ψ|φ,y,X, q) associated

with non-informative (improper) priors p(β) ∝ 1 and p(ψ|q) ∝ I(ψ ∈ Ψ) based on a

Laplace approximation (Shun and McCullagh, 1995; Severini, 2000) of the integral for

fixed p� n∫
R2p

p(y|ψ, φ,β,X, q)dβ = Lp(ψ)(2π)p
∣∣∣∣− ∂2`

∂β∂βT

(
ψ, φ, β̂ψ

)∣∣∣∣−1/2

+O
(
n−1
)
,

with `(ψ, φ,β) = logL(ψ, φ,β). As
∣∣∣−∂2`

/
∂β∂βT

(
ψ, φ, β̂ψ

)∣∣∣ =
∣∣XT

ψWXψ

∣∣, we get

pnB(ψ|φ,y,X, q) = Lp(ψ)(2π)p
∣∣XT

ψWXψ

∣∣−1/2
I(ψ ∈ Ψ)/p(y) +O

(
n−1
)
.

With this, the prevalent Bayesian threshold estimator in the literature is the posterior

mean ψ̂nB =
∫

Ψ∗
ψpnB(ψ|φ,y,X, q)dψ. Comparing pnB(ψ|φ,y,X, q) with Lp(ψ), we note

that they differ by a term proportional to
∣∣XT

ψWXψ

∣∣−1/2
. In the case of Gaussian

observations, W = In/σ
2. Since

∣∣XT
ψWXψ

∣∣ =
∣∣XT

1WX1

∣∣ · ∣∣XT
2WX2

∣∣→ 0 for d(ψ)→

0, pnB(ψ|φ,y,X, q) becomes very large for ψ close to the boundary of Ψ. Moreover, as the

profile likelihood function requires d(ψ) ≥ 1 to be well-defined, so does the calculation of

the posterior density. Again, the only solution in the literature is to restrict the parameter

space Ψ (which in our Bayesian framework is equivalent to working with a uniform prior

ψ ∼ U [Ψ∗] instead of ψ ∼ U [Ψ]). In this case, however, pnB(ψ|φ,y,X, q) becomes largest

exactly for values of ψ which are arbitrarily included or excluded from Ψ∗ by varying c.

Consequently, expanding or reducing Ψ∗ critically affects the Bayesian threshold estimate,

whether it is calculated as the posterior mode, mean or median. The middle plot in Fig. 1

illustrates this problem.
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4 The regularized Bayesian estimator

When rethinking the threshold estimator, there are good arguments for continuing to pur-

sue Bayesian options. In general, Bayesian estimators naturally incorporate the variability

of nuisance parameters and there are reasons to expect them to be (at least asymptoti-

cally) the most efficient estimators, as discussed in Section 3.2. Our idea now is to exploit

understanding of when reliable estimation becomes particularly difficult in order to regu-

larize the posterior density. We observe that both profile likelihood and posterior density

become increasingly distorted as ψ approaches the boundary of Ψ (or the farther it is

away from the true threshold ψ0). Using the notation introduced in Section 2, we define

η = X1β1 +X2β2 = (X1 +X2)β1 +X2(β2 − β1) = Xβ1 +X2δ. (7)

While maintaining a non-informative constant prior for β1, we pick a normal prior with

zero mean for δ, δ ∼ N (0, σ2
δIp). When σ2

δ tends towards infinity, this prior becomes

non-informative. However, for small values σ2
δ , we introduce prior knowledge suggesting

that δ takes values close to zero. The most important characteristic of this new choice of

priors is that it regularizes the posterior density for ψ close to the boundary of Ψ. Putting

priors on σ2
δ (e.g. an inverse Gamma distribution) and ψ specifies a full Bayesian model

and allows for estimation with Markov chain Monte Carlo techniques.

Alternatively, we suggest to use a Laplace approximation to get the approximate pos-

terior p(ψ|φ, σ2
δ ,y,X, q). This accelerates estimation and enables us to illustrate the

regularizing effect. To evaluate the posterior density

p(ψ|φ, σ2
δ ,y,X, q) =

p(ψ|q)

p(y|φ, σ2
δ ,X, q)

∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

we use a Laplace approximation and follow a line of reasoning closely resembling Breslow
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and Clayton (1993) to obtain∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)p/2 exp

{
−1

2
(z̃ −Xβ̂1)TV −1(z̃ −Xβ̂1) +

n∑
i=1

c(yi, φ)

}
(8)

·
∣∣σ2
δX

T
2WX2 + Ip

∣∣−1/2 ∣∣XTV −1X
∣∣−1/2

+O
(
n−1
)
,

with the working variable z̃ defined as z̃ = Xβ̂1 +X2δ̂ +G(y − µ),

G = diag {g′(µi)}, and V = W−1 + σ2
δX2X

T
2 for W−1 = diag {φb′′(θi)g′(µi)2}.

Here, µ, G, W and V are evaluated at the (approximate) pos-

terior mode (β̂1, δ̂) = arg max
(β1,δ)∈R2p p(β1, δ|ψ, φ, σ2

δ ,y,X, q), that is,

β̂1 = (XTV −1X)−1XTV −1z̃ and δ̂ = σ2
δX

T
2V

−1(z̃ −Xβ̂1). Details on the derivation

of (8) are provided in the appendix. In contrast to the posterior based on non-informative

priors, the term |XT
ψWXψ| disappears, and with it the deteriorations near the boundary

of Ψ observed for pnB(ψ|φ,y,X, q). Moreover, p(ψ|φ, σ2
δ ,y,X, q) is well-defined for all

ψ ∈ Ψ, independent of d(ψ). It is easy to see that δ̂ → 0 and β̂1 → (XTWX)−1XTWz̃

at the boundary of Ψ, for X2 = 0 or X2 = X. We do not encounter the ill-posed

problem of estimating p nuisance parameters from m < p observations, or calculating

β̂ψ when d(ψ) < 1, as in profile likelihood or non-informative Bayesian estimation.

Consequently, there is no need to subjectively restrict the parameter space. Considering

δ̂ = σ2
δX

T
2V

−1(z̃ −Xβ̂1) = arg min
δ∈Rp

(z̃ −Xβ̂1 −X2δ)TW (z̃ −Xβ̂1 −X2δ) +
1

σ2
δ

δTδ,

(9)

it becomes evident that the proposed prior leads to the strategy of turning an ill-posed

into a well-posed problem tracing back to Tikhonov et al. (1977). For small values of the

regularization parameter 1/σ2
δ , the first term of the functional to be minimized in (9) will

drive the resulting δ̂, for large values it is the latter. For the nuisance parameter estimates

β̂1 and β̂2 = β̂1 + δ̂, basic matrix algebra reveals that β̂1 → (XT
1WX1)−1XT

1Wz̃ and

β̂2 → (XT
2WX2)−1XT

2Wz̃ for σ2
δ →∞, while for σ2

δ → 0, both β̂1 and β̂2 converge to

13



(XTWX)−1XTWz̃.

Clearly, the choice of the regularization parameter σ2
δ is essential to any estimate based

on p(ψ|φ, σ2
δ ,y,X, q). It can naturally be estimated in the full Bayesian framework.

However, pursuing our approximate approach further we rather make use of the empirical

Bayes paradigm. In general, the empirical Bayes approach to modeling observations y

differs from the usual Bayesian setup in that the hyperparameters for the highest level in

the model’s hierarchy are replaced by their maximum likelihood estimates. In our case,

we obtain σ̂2
δ for fixed X, q and ψ by maximizing

p(y|ψ, φ, σ2
δ ,X, q) =

∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

so as to base threshold estimation on

prB(ψ|y,X, q) = p(ψ|y,X,q, φ̂ψ, σ̂
2
δ ) ∝

∣∣∣σ̂2
δX

T
2WX2 + Ip

∣∣∣−1/2∣∣∣XT V̂
−1
X
∣∣∣−1/2

· exp

{
−1

2
(z̃ −Xβ̂1)T V̂

−1
(z̃ −Xβ̂1) +

n∑
i=1

c
(
yi, φ̂ψ

)}
I(ψ ∈ Ψ),

with V̂ evaluated at σ̂2
δ . The right plot in Fig. 1 shows log of this posterior density

for a sample run corresponding to the simulation setting 1 C of Section 6. It is clearly

well-defined over the whole domain of the threshold and its values are regularized at the

boundary regions, making the extremum more pronounced.

Once the posterior density is obtained, one can calculate ψ̂rB. We observed that in

the critical small-sample settings the posterior density is often characterized by multiple

modes. Thus, an estimate based on maximization (the posterior mode) is likely to suffer

from this. The posterior mean presents a more robust alternative. However, when the

true threshold is located close to the boundary of Ψ, the posterior distribution is skewed

towards this boundary. As a result, the posterior mean tends to be drawn towards the

middle of Ψ (Doodson, 1917; Kendall, 1943, page 35). Hence, we opt for the posterior

median as a compromise between the latter two. Accordingly, we suggest to calculate a

14



regularized Bayesian threshold estimator ψ̂rB as

ψ̂rB∫
q(1)

prB(ψ|y,X, q, φ)dψ = 0.5

assuming a prior p(ψ|q) ∝ I(ψ ∈ Ψ) for ψ.

By definition, the restricted (or residual) likelihood function (Harville, 1977) of a gener-

alized linear mixed model is the approximate posterior (8). Hence, the function glmmPQL

in the R-package MASS readily provides us with the desired estimate σ̂2
δ . Moreover, the

function simultaneously produces an estimate φ̂ψ. For the Gaussian case, we can employ

the function lme directly (with its parameter method left at the default value REML). It

is part of the R-package nlme. This possibility to take advantage of existing functions

implemented for mixed models greatly facilitates computation of our proposed estimator,

which can be performed in seconds.

5 Inference about the threshold parameter

In our Bayesian framework it is natural to form confidence regions for ψ as credible sets;

an equi-tailed credible set C of level 1− 2α is defined as

C =

qp (1−α)∫
qp (α)

p(ψ|y,X, q, φ)dψ, qp(α) = inf
x∈Ψ

x∣∣∣
∫
ψ≤x

p(ψ|y,X, q, φ)dψ ≥ α

 .

These credible sets are valid for change-point and threshold models, both continuous and

discontinuous. In the frequentist framework it is straightforward to obtain confidence

intervals for continuous models. For discontinuous models the asymptotic distribution

does not readily provide a feasible way to construct confidence intervals as it depends

on (a possibly large number of) nuisance parameters. As a strategy to circumvent this

problem, it has been suggested to base asymptotic developments on the assumption of a

diminishing difference in coefficients between regimes, that is, to work with δ = δ(n) and

δ(n) → 0 as n → ∞ (Hansen, 2000). However, this approach has only been applied in
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the context of models with piecewise linear mean so far. To the best of our knowledge

there does not exist previous work on confidence sets for the threshold parameter in

discontinuous generalized threshold regression models with a non-identity link.

To test for a threshold effect, a natural approach is to take advantage of the link to

generalized linear mixed models. Understanding a threshold effect as the presence of a

random effect δ allows us to draw on existing methods for mixed models, more explicitly,

on tests for a zero random effect variance σ2
δ = 0. For the Gaussian case of a linear mixed

model, this theory has been developed by Crainiceanu and Ruppert (2004) and Scheipl

et al. (2008), who also implemented the approach in the R package RLRsim. An extension

to generalized linear mixed models might possibly provide the basis for a unified test

in generalized threshold regression models. Yet, it is beyond the scope of this paper to

pursue this thought further.

6 Simulations

To assess the performance of the suggested estimator ψ̂rB we performed a simulation study.

We report results for eight different settings, covering both situations in which common

estimators produce reliable results and others in which they are prone to be distorted.

The difference between setting 1 and setting 2 is in the conditional distribution of yi: in

the first case, yi|XT
i , qi is normally distributed, in the second case it follows a Poisson

distribution. The design matrix X is random, each entry xij ∼ U [0, 1] for setting 1,

xij ∼ U [0, 0.01] for setting 2. The transition variable follows a uniform distribution

qi ∼ U [0, 1]. As this implies pr {d (ψ0) < 1} ≈ 0.46 for setting C, we base our simulations

on a fixed sample of transition variables qi = i/n, i = 1, . . . , n. This way, we ensure

that d (ψ0) = 1, hence, that Lp (ψ0) is always well-defined. While settings A and B differ

from setting C in the threshold (ψ0 = 0.5 for A and B; ψ0 = 0.3 for C), setting A is

distinct from settings B and C in the signal-to-noise-ratio, which we control by the choice
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Normal response (1)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [−0.5, 0.5] U [−0.5, 0.5] U [−0.5, 0.5] U [−0.25, 0.25]

var(yi) 0.752 1.52 1.52 0.252

xij U [0, 1] U [0, 1] U [0, 1] U [0, 1]

p 30 30 30 10

Poisson response (2)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [10, 20] U [0, 10] U [0, 10] U [10, 20]

xij U [0, 0.01] U [0, 0.01] U [0, 0.01] U [0, 0.01]

p 30 30 30 10

Table 1: Differences between simulation settings.

of δ = β2 − β1 relative to the variance of the observations. For setting 1 A – C, the

difference δ ∼ U [−0.5, 0.5] and random variables are simulated with variances var(yi) =

0.752 (setting A) and var(yi) = 1.52 (settings B and C). For setting 2 A the difference

δ ∼ U [10, 20], whereas δ ∼ U [0, 10] for settings 2 B and C. Setting D features less

nuisance parameters than A – C; p = dim(β1) = dim(β2) = 10 for D, p = 30 for A – C.

The sample size is n = 100. Table 1 sums up differences between settings. Regression

coefficients β1 are drawn from a Poisson distribution with mean 10. To be unambiguous,

parameters δ and β1 are fixed; we randomly generate them once at the beginning of the

simulation according to the distributions specified. Our Monte Carlo sample contains

1000 replications.

All three estimators ψ̂pL, ψ̂nB and ψ̂rB perform well given a high signal-to-noise-ratio and

ψ0 in the middle of Ψ (setting A). Lowering the signal-to-noise-ratio (setting B) alters the

results: we observe nearly unbiased estimates ψ̂pL, ψ̂nB and ψ̂rB, but due to its very small

variance the latter stands out by its small mean square error. When we shift the true

threshold towards the boundary of Ψ (setting C), ψ̂rB clearly outperforms both ψ̂pL and

17



bias mean square error

Setting ψ0 ψ̂pL ψ̂nB ψ̂rB ψ̂pL ψ̂nB ψ̂rB

1 A 0.5 -0.002 0.001 0.000 0.002 0.009 0.000

(0.045) (0.095) (0.000)

1 B 0.5 -0.003 -0.001 -0.001 0.010 0.023 0.006

(0.100) (0.152) (0.077)

1 C 0.3 0.110 0.087 0.031 0.024 0.024 0.008

(0.110) (0.126) (0.084)

1 D 0.3 0.064 0.080 0.059 0.036 0.066 0.017

(0.032) (0.060) (0.014)

2 A 0.5 0.001 0.026 0.000 0.000 0.001 0.000

(0.000) (0.000) (0.000)

2 B 0.5 0.004 −0.111 −0.004 0.003 0.029 0.001

(0.055) (0.126) (0.032)

2 C 0.3 0.054 0.049 −0.002 0.007 0.010 0.001

(0.071) (0.089) (0.032)

2 D 0.3 0.025 -0.045 0.015 0.013 0.032 0.003

(0.013) (0.030) (0.003)

Table 2: Simulation results. Standard errors are reported in parentheses below the bias.

ψ̂nB in terms of mean square error, bias and variance. The differences in bias, variance and

mean squared error are more pronounced with a greater number of nuisance parameters p,

but still visible in simulations with smaller ratio p/n (setting D). Results are summarized

in Fig. 3 and Table 2. The effects of increasing the signal-to-noise-ratio and shifting ψ0

on `p(ψ) are illustrated in Fig. 2. The mode of `p(ψ) is less pronounced in setting 1B

than in 1A. Further, the number of local maxima rises and they become more distinctive

as we move to setting 1B and then to 1C.

7 Applications

This work is originally motivated by the application of threshold vector error correction

models in price transmission analysis. Such models are rather involved and we refer to
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Figure 3: Boxplots for different estimators and selected simulations. Dashed lines indicate
the true threshold ψ0, black lines in the boxes are sample means.

Greb et al. (2011) for more details and two more real data examples using our regularized

Bayesian estimator.

7.1 Cross-country growth behavior

As another application of the regularized Bayesian threshold estimator, we consider the

case of economic growth modeling. Durlauf and Johnson (1995) estimate a standard

growth model using cross-sectional data on a sample of 96 countries and investigate

whether the coefficients of this model differ across sub-sets of countries depending on their

initial conditions. Their analysis is based on the so-called regression tree methodology

(Breiman et al., 1984), which suggests three thresholds based on two different transition

variables for this application. Hansen (2000) revisits their paper. Using the Durlauf and

Johnson data he estimates a regression

log (GDP )i,1985 − log (GDP )i,1960

= ζ + β log (GDP )i,1960 + π1 log (INV )i + π2 log(ni + g + δ) + π3 log (SCHOOL)i + εi
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which explains real GDP growth between 1960 and 1985 in country i,

log (GDP )i,1985 − log (GDP )i,1960, using real GDP in 1960 GDPi,1960, the invest-

ment to GDP ratio INVi, the growth rate of the working-age population ni, the rate of

technological change g, the rate of depreciation of physical and human capital stocks δ,

and the fraction of working-age population enrolled in secondary school (SCHOOL)i.

With reference to Durlauf and Johnson (1995), he sets g + δ = 0.05. He tests for a

threshold effect based on either one of transition variables they propose. He only finds

evidence based on the transition variable log (GDP )i,1960 and calculates the profile

likelihood (or, equivalently, least squares) estimate as ψ̂pL = 6.76 together with an

asymptotic 95% confidence interval [6.39, 7.49]. This corresponds to an estimate of

$863 per capita GDP in 1960 with an associated confidence interval of [$594, $1794].

Hansen (2000) acknowledges that while the confidence interval seems rather tight (given

observations for GDPi,1960 ranging from $383 to $12362), it effectively contains 40 of the

96 countries in the sample. This is in line with the number of local maxima in the profile

likelihood function which hints at the uncertainty inherent in this method (Fig. 4). In

addition, the fact that ψ̂pL leaves only 18 observations in the first regime gives rise to

concern that the threshold might be located close to the boundary of Ψ. We know that

the profile likelihood is typically distorted if this is the case.

Hence, we reestimate the model with the regularized Bayesian estimator. The latter

depends on the parameterization of the transition variable. As log (GDP )i,1960 is an

explanatory variable, we choose the parameterization qi = log (GDP )i,1960. Figure 4

shows that the resulting posterior density differs considerably from the profile likelihood

function and that the location of the maximum shifts. This is not surprising given the

deformations often observed for the profile likelihood function close to the boundary of

the threshold parameter space. The posterior median is located at ψ̂rB = 7.37 compared

with Hansen’s (2000) ψ̂pL = 6.76. It implies that for the 43 poorest countries coefficients
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Figure 4: Profile likelihood and regularized posterior density for a threshold based on the
transition variable qi = log (GDP )i,1960.

for the growth model are distinct from the rest, whereas the profile likelihood estimate

implicates that this is only the case for the poorest 18 countries. While it is not possible

to state conclusively that the regularized Bayesian estimate is more appropriate from an

economic perspective, the shapes of the likelihoods in Fig. 4 and the fact that the profile

likelihood estimate is near the boundary of its domain suggests that the latter may be

distorted by the weaknesses of the profile likelihood method discussed above.

Comparing profile likelihood estimates for the regression coefficients with their regular-

ized Bayesian counterparts, we note that there is much less difference between regimes

according to regularized Bayesian than profile likelihood estimates (see table 7.1). The

difference between the two regimes as estimated within the regularized Bayesian frame-

work is negligible. This is in line with Hansen’s (2000) finding that the null hypothesis

of no threshold is not rejected at the 5%-level (Hansen, 2000, page 587). The example

demonstrates the effect of using the suggested regularized Bayesian estimator instead of

the profile likelihood estimator in small samples with a multi-modal profile likelihood and

high uncertainty attached to the estimate ψ̂pL obtained by maximizing it.
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1st regime 2nd regime

ζ̂ β̂ π̂1 π̂2 π̂3 ζ̂ β̂ π̂1 π̂2 π̂3

pL
4.31 -0.66 0.23 -0.29 0.02 3.66 -0.32 0.50 -0.49 0.36

(3.21) (0.33) (0.14) (0.92) (0.11) (0.85) (0.07) (0.11) (0.30) (0.07)

rB
3.36 -0.41 0.47 -0.60 0.22 3.37 -0.38 0.47 -0.62 0.20

(0.85) (0.08) (0.09) (0.28) (0.06) (0.85) (0.07) (0.09) (0.28) (0.07)

Table 3: Regressions coefficient estimates. ”pL” refers to the profile likelihood, ”rB” to
the regularized Bayesian framework. Standard errors in parentheses below the estimates.

7.2 Effects of climate on snowshoe hare survival

In addition, we study a famous dataset of snowshoe hare abundance in the main drainage

of Hudson Bay in Canada. It consists of annual observations starting in the 19th century.

A preeminent feature of the data is cyclical fluctuations in the hare population, see Fig. 5.

These have been ascribed to the predator-prey relationship between lynx and snowshoe

hares. Samia and Chan (2011) highlight selected references and further investigate one

strand of the discussion focusing on the effect of snow conditions on hunting efficiency in

different phases of the cylce. To this end, they estimate a generalized threshold regression

model with the hare count yt as a Poisson distributed response whose mean is related to

the explanatory variables via a log-link,

log(µt) = β0 + β1Dt +


3∑
i=1

β1,i log(yt−i + 1) + β1,4wt−1 yt−d ≤ ψ,

3∑
i=1

β2,i log(yt−i + 1) + β2,4wt−1 yt−d > ψ

for the years t = 1844, . . . , 1904. Apart from the regression coefficients and the threshold,

the delay of the transition variable d is included as an additional parameter, d ∈ {1, 2, 3}.

As the count for the year t = 1863 is considered an outlier, the model contains a dummy

variable Dt = I(t = 1863). The covariate wt denotes the detrended annual winter cli-

mate index of the North Atlantic Oscillation. We follow them in estimating this model.

Our analysis is based on the series of hare abundance initially presented graphically by

MacLulich (1937) which we calibrate with data available online; it is included in the sup-
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Figure 5: Annual hare abundance. Observations estimated to belong to the lower regime
are plotted as dots, observations estimated to belong to the upper regime as triangles.
The horizontal grey line indicates the location of the estimated threshold, ψ̂rB = 22.

plementary material to this paper. We further use the North Atlantic Oscillation index

published at www.cru.uea.ac.uk/cru/data/nao.

The series of 61 observations is rather short and maximizing out regression coefficients

leaves us with a profile likelihood function for (d, ψ) which is characterized by various

local maxima; it is displayed in the upper row of Fig. 6 for d = 1, 2, 3 and ψ ∈ Ψ∗(1). In

addition, we cannot rule out overdispersion. Hence, we are confronted with a setting in

which the regularized Bayesian estimate can be more reliable than the profile likelihood

estimate. This becomes evident in the second row of Fig. 6, which shows the posterior

densities for ψ corresponding to d = 1, 2, 3. While we obtain a profile likelihood estimate

(d̂pL, ψ̂pL) = (3, 55), the regularized Bayesian estimator yields (d̂rB, ψ̂rB) = (2, 22) with d̂rB

calculated as the posterior median based on a flat prior on {1, 2, 3}.

When referring to Samia and Chan (2011) we have to keep in mind that their results

diverge slightly from ours and are not directly comparable as we were not able to obtain the

data they used. Yet, their profile likelihood estimate is still very close, (d̂pL, ψ̂pL) = (3, 69).

However, they discard this estimate in favor of (d̂, ψ̂) = (2, 25), giving heuristic arguments

based on residual analysis. The latter also allows for a very plausible interpretation.

Apparently, our regularized Bayesian estimate (d̂rB, ψ̂rB) = (2, 22) is close to the preferred

estimate in Samia and Chan (2011). In fact, the difference in estimated thresholds only
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Figure 6: Log-likelihood functions (upper row) and log-posterior densities (lower row) for
different delays of the transition variable.

has implications for a single observation (t = 1869). Except for this, thresholds induce

identical allocations of observations to regimes (in the respective datasets), as is clearly

visible when comparing our Fig. 5 with Fig. 1 in Samia and Chan (2011). Hence,

the regularized Bayesian estimator enables us to attain a meaningful estimate directly

avoiding any arbitrary modification of the suggested estimation method as done by Samia

and Chan (2011). Coefficient estimates are similar in both modeling frameworks.

8 Conclusions

In this work we describe settings in which estimation of generalized threshold regression

models can be problematic. We suggest a new regularized Bayesian estimator which out-

performs standard estimators. In particular, the suggested threshold estimator is defined

on the whole parameter space and thus circumvents the subjective and often misleading
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restriction of the threshold domain which standard estimators require. Moreover, regu-

larizing the posterior density at the boundary of its domain helps to improve estimation,

especially if the true threshold is close to this boundary. Employing the empirical Bayes

approach, we can use built-in functions for generalized linear mixed models in statistics

software and obtain estimates with little additional numerical effort and without the use

of Markov chain Monte Carlo or other sampling techniques. Inference about the estimated

parameter can be carried out in the standard Bayesian manner. Simulation studies and

a real-data example confirm the effectiveness and relevance of our method.
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Appendix

Derivation of equations (4) – (6)

We first approximate the profile likelihood,

−`p(ψ) ∝− 1

φ̂ψ

n∑
i=1

yiθ̂i − b(θ̂i) ≈
1

2

n∑
i=1

(yi − µ̂i)2

φ̂ψb′′(θ̂i)
=

1

2

n∑
i=1

{ẑi − (Xψ)iβ̂ψ}2

φ̂ψg′(µ̂i)2b′′(θ̂i)

=
1

2

(
ẑ −Xψβ̂ψ

)T
Ŵ
(
ẑ −Xψβ̂ψ

)
≈ 1

2

(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
where

ẑ = Xψβ̂ψ + Ĝ (y − µ̂) , Ĝ = diag {g′(µ̂i)} and Ŵ = diag
{
φ̂ψb

′′(θ̂i)g
′(µ̂i)

2
}−1

.

The estimated Ŵ for fixed ψ is assumed to vary little or not at all as a function of the

mean so we use W evaluated at the true β directly. This is a typical assumption in the

literature on generalized linear models (e.g. Breslow and Clayton, 1993). We assume the

same for Ĝ.
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To compare
(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
with (z −Xψβ)T W (z −Xψβ) for

z = Xψβ +G (y − µ), we then note that

bias
(
β̂ψ

)
= E

(
β̂ψ

)
− β =

{
0, (X ′2WX2)−1XT

[ψ,ψ0]WX [ψ,ψ0](β1 − β2)
}T

. (10)

To see this, we approximate β̂ψ via Fisher-scoring as β̂ψ =
(
XT

ψWXψ

)−1
XT

ψWẑ, then,

exploiting that ẑ is the working variable obtained in the last (m-th) iteration, calculate

E(ẑ) = E(zm) = E
{
Gm (y − µm) +Xψ(βψ)m

}
= Gm (E(y)− µm) +Xψ(βψ)m

= Gm {h(η)− h(ηm)}+Xψ(βψ)m ≈ Gm

[
∂h

∂η
(ηm)

{
Xψ0β −Xψ(βψ)m

}]
+Xψ(βψ)m

= GmG
−1
m

{
Xψ0β −Xψ(βψ)m

}
+Xψ(βψ)m

= Xψ0β,

and get

E
(
β̂ψ

)
= (XT

ψWXψ)−1XT
ψW E(ẑ) =

{
(XT

1WX1)−1 0
0 (XT

2WX2)−1

}
XT

ψW E(ẑ)

=

{
(XT

1WX1)−1XT
1W

(XT
2WX2)−1XT

2W

}{
(X1 +X [ψ,ψ0])β1 + (X2 −X [ψ,ψ0])β2

}
=

{
β1

β2 + (XT
2WX2)−1XT

2WX [ψ,ψ0](β1 − β2)

}
.

It is helpful to further keep in mind that

E µ̂ = E
{
h
(
Xψβ̂ψ

)}
≈ E

{
h (Xψβ) +G−1

(
Xψβ̂ψ −Xψβ

)}
=h(Xψβ) +G−1Xψ E

(
β̂ψ − β

)
= h(Xψβ) +G−1Xψ bias β̂ψ

and

var µ̂ ≈ var
{
h (Xψβ) +G−1

(
Xψβ̂ψ −Xψβ

)}
=
(
G−1

)2
var
(
Xψβ̂ψ

)
,

consequently,

µ̂ = E µ̂+Op
(√

var µ̂
)
≈ h(Xψβ) +G−1Xψ bias β̂ψ +G−1Op

(√
varXψβ̂ψ

)
. (11)
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We now define H = W 1/2X2(XT
2WX2)−1XT

2WX [ψ,ψ0] and use (10) and (11) to obtain

−`p(ψ) ∝
(
ẑ −Xψβ̂ψ

)T
W
(
ẑ −Xψβ̂ψ

)
≈ (y − µ̂)T GWG (y − µ̂)

= {y − h(Xψβ)}T GWG {y − h(Xψβ)}

+ 2 {y − h(Xψβ)}T GWG {h(Xψβ)− µ̂}+ {h(Xψβ)− µ̂}T GWG {h(Xψβ)− µ̂}

≈ (z −Xψβ)T W (z −Xψβ)

− 2 (z −Xψβ)T W

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}
+

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}T
W

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}

= (z −Xψβ)T W (z −Xψβ)

− 2 (z −Xψβ)T W

{
Xψ bias β̂ψ +Op

(√
varXψβ̂ψ

)}
+
(
Xψ bias β̂ψ

)T
W
(
Xψ bias β̂ψ

)
+ 2

(
Xψ bias β̂ψ

)T
WOp

(√
varXψβ̂ψ

)
+Op

(√
varXψβ̂ψ

)T
WOp

(√
varXψβ̂ψ

)
= (z −Xψβ)T W (z −Xψβ)

+
{

(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}
H(β1 − β2)

+
{

2(β1 − β2)THT − 2 (z −Xψβ)T W 1/2
}T
Op
(
W 1/2

√
varXψβ̂ψ

)
+Op(2p),

Derivation of equation (8)

We obtain the approximate posterior (8) as follows. Laplace approximation produces∫
Rp

∫
Rp

p(y|β1, δ,ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)−p/2|σ2
δIp|−1/2

∫
Rp

∫
Rp

exp {−κ (δ,β1)} dδdβ1

= (2π)p/2|σ2
δIp|−1/2 exp

{
−κ
(
δ̂, β̂1

)} ∣∣∣∣ ∂2κ

∂(δ,β1)∂(δ,β1)T
(δ̂, β̂1)

∣∣∣∣−1/2

+O
(
n−1
)

27



for κ (δ,β1) = −
n∑
i=1

yiθi − b(θi)
φ

−c(yi, φ)+
1

2σ2
δ

δTδ and
(
δ̂, β̂1

)
= argmax

(δ,β1)∈R2p

− κ (δ,β1).

Given the derivatives

∂κ

∂δ
(δ) = −

n∑
i=1

(yi − µi)(X2)i
φb′′(θi)g′(µi)

+
1

σ2
δ

δ = −XT
2WG(y − µ) +

1

σ2
δ

δ,

∂κ

∂β1

(β1) = −
n∑
i=1

(yi − µi)(X)i
φb′′(θi)g′(µi)

= −XTWG(y − µ),

and

∂2κ
/
∂(δ,β1)∂(δ,β1)T =

(
XT

2WX2 + (1/σ2
δ ) Ip XT

2WX
XTWX2 XTWX

)
(12)

for W−1 = diag {φb′′(θi)g′(µi)2} and G = diag {g′(µi)}, we obtain

∣∣∣∂2κ
/
∂(δ,β1)∂(δ,β1)T

∣∣∣ =
∣∣∣XT

2WX2 +
(
1/σ2

δ

)
Ip

∣∣∣∣∣∣XTV −1X
∣∣∣

using basic matrix algebra.

To find δ̂ and β̂1, we iteratively solve

XT
2WG(y − µ) =

1

σ2
δ

δ and XTWG(y − µ) = 0

via Fisher-scoring: Starting at δ̂ = δ0 and β̂1 = (β1)0, we solve

I(δm,βm)

(
δm+1

(β1)m+1

)
= I(δm,βm)

(
δm

(β1)m

)
+ s(δm, (β1)m),

I = ∂2κ
/
∂(δ,β1)∂(δ,β1)T and s = −∂κ

/
∂(δ,β1), or, more explicitely,

{
XT

2WmX2 +
1

σ2
δ

Ip

}
δm+1 +XT

2WmX(β1)m+1 = XTWmzm

and

XTWmX2δm+1 +XTWmX(β1)m+1 = XTWmzm,

where zm = X2δm +X(β1)m +Gm(y − µm). This yields

β̂1 =
(
XTV −1X

)−1
XTV −1z̃ and δ̂ = σ2

δX
T
2V

−1(z̃ −Xβ̂1),
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where V = W−1 + σ2
δX2X

T
2 and z̃ = XT

2 δ̂ + Xβ̂1 + G(y − µ), with W , G and µ

evaluated at δ = δ̂ and β1 = β̂1 (Harville, 1977).

With this, we can now further simplify the posterior. Following Breslow and Clayton

(1993) in replacing

−2
n∑
i=1

{yiθi − b(θi)} by the chi-squared statistic
n∑
i=1

(yi − µi)2

b′′(θi)

we can exploit the identity

V −1
(
z̃ − β̂1

)
= W

(
z̃ −Xβ̂1 −X2δ̂

)
,

which results in

(
z̃ −Xβ̂1 −X2δ̂

)T
W
(
z̃ −Xβ̂1 −X2δ̂

)
=
(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
− 1

σ2
δ

δ̂
T
δ̂,

and, hence,

exp

{
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}

≈ exp

{
−1

2

(
z̃ −Xβ̂1 −X2δ̂

)T
W
(
z̃ −Xβ̂1 −X2δ̂

)
+

n∑
i=1

c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}

= exp

{
−1

2

(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
+

n∑
i=1

c(yi, φ)

}
.

Alltogether, this leaves us with∫
Rp

∫
Rp

p(y|β1, δ,ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

=(2π)p/2|σ2
δIp|−1/2 exp

{
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}∣∣∣XTV −1X
∣∣∣−1/2

·
∣∣∣XT

2WX2 +
(
1/σ2

δ

)
Ip

∣∣∣−1/2

+O
(
n−1
)

≈(2π)p/2 exp

{
−1

2

(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
+

n∑
i=1

c(yi, φ)

}∣∣∣XTV −1X
∣∣∣−1/2

·
∣∣∣σ2
δX

T
2WX2 + Ip

∣∣∣−1/2

+O
(
n−1
)
.
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