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Abstract

In North Carolina, where soybeans and corn are the two primary crops, the
recent increase in the demand for U.S. corn has triggered a shift of farm acreage
from soybeans to corn, leading to a rapid rise in prices of both commodities.
However, the rate of the price changes, as well as the price level, is significantly
different in markets that are located in different parts of the state. This
study extends the literature that examines linkages between spatially separated
markets by using a threshold autoregressive model with a less restrictive
assumption for estimating the transaction cost neutral band – the band within
which trade is not profitable. This generalization allows the neutral band of
transactions costs to change according to various external factors, including
fuel costs and seasonality. The estimation results indicate that for longer time
series data, variable thresholds models statistically outperform the constant
thresholds specification, and may provide a better representation of corn and
soybean price data. Additionally, impulse response functions that use the
asymmetric variable threshold model parameters indicate that the magnitude of
the shock as well as the time-to-price-parity-equilibrium in the linked markets
may be underestimated if a constant thresholds specification is implemented.

KEYWORDS: threshold autoregression, spatially separated markets, impulse
response, neutral band

JEL classification codes: Q11, Q13



Spatial Analysis of Market Linkages in North

Carolina Using Threshold Autoregression Models

with Variable Transaction Costs

In recent years there has been a significant increase in the price volatility of corn

and soybean markets, due primarily to an increase in demand for ethanol based

biofuels. With the increased demand for ethanol, the demand for corn has become

much more inelastic, causing wider price movements in response to changes in quantity

supplied. In general, these broad price movements have been observed across all

markets; however, there exist significant differences in the price adjustment paths of

individual markets. By examining the linkage structures between individual markets,

it can be possible to estimate the price transmission behavior within the environment

of highly volatile changes in price.

There are a number of studies that have examined market linkages through price

transmission patterns (for example, see Goodwin and Piggott 2001; Bessler, Park,

and Mjelde 2007). These works implement threshold autoregressive (TAR) models

to estimate a neutral band within which prices follow a random walk process. The

neutral band represents transaction costs that occur due to the spatial separation

of any two markets. These transaction costs might often include expenditures

on fuel, time and effort to coordinate the shipment and pick-up of transported

commodities, synchronization of buyers and sellers, and knowledge of local highway

laws for transporting grains. Additionally, transaction costs can vary seasonally –

decreasing during harvest (when locally grown commodities become available), and
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increasing during months when the commodity must be imported to meet local

demand. Typically, prices of a commodity in any two linked markets differ by the

amount of the inherent transaction costs that are required to ship the commodity

from one market to the other. However, a shock to the price of one market may cause

the price difference to be more than the transaction costs (the price difference falls

outside of the transaction costs band), which would make it profitable to purchase

the commodity in one market, incur the associated costs of transporting to the other,

and sell the commodity for a higher price. This type of arbitrage behavior would

continue until the prices in the linked markets re-adjust such that their difference is

once again equal to the transaction costs that are associated with transporting the

commodity from one market to the other.

The focus of this study is to examine the effects that price movements might have

on the threshold values of the neutral band. Previous studies assume that the neutral

band remains constant; however, due to the recent rapid rise of transportation costs as

well as general seasonal effects, it is necessary to consider whether the assumption of a

constant neutral band must be relaxed. By allowing the thresholds to vary according

to relevant exogenous factors it may be possible to better understand the effects

that external economic conditions might have on price discovery in linked markets.

We develop an empirical framework that can appropriately model a variable neutral

transaction costs band, and use the results to investigate differences with the model

that restricts the neutral band to be constant.

Using the threshold cointegration methods of Balke and Fomby (1997), this study

evaluates the linkages of North Carolina corn and soybean markets. Tests for the
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presence of threshold effects are performed following Tsay (1989). Upon confirmation

of threshold effects, a grid-search technique is used to determine the thresholds. The

estimation uses a large collection of daily corn and soybean price data for markets in

North Carolina. We find that variable threshold models statistically outperform the

constant threshold specification. Additionally, the variable thresholds model provides

a richer environment for examining impulse response functions. In general, our results

are consistent with past studies, indicating that price behavior exhibits long-run

market integration. However, we find that the constant threshold model typically

underestimates the time-to-convergence as well as the magnitude of the effect that a

shock can have on prices in linked markets.

The analysis is organized as follows: first, we present the methodology that is used

for evaluating threshold autoregressive models, incorporate transaction costs that can

be affected by exogenous factors; next, a description of the data and preliminary

analyses are presented. Daily corn and soybean data are used to estimate threshold

effects among spatially linked North Carolina markets, investigate the findings, and

use impulse response functions to simulate price responsiveness. Concluding remarks

are offered in the final section.

Econometric Specification of the Threshold Autore-

gressive Model

Following the specification developed by Balke and Fomby (1997), we build upon

the threshold autoregression model, which defines a correspondence between error
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correction models that represent cointegrating relationships and autoregressive

models of an error correction term. In this manner, it is possible to account for the

transaction costs that might inhibit transmission of prices across spatially separated

markets.

In general, threshold models can be viewed as a regime switching framework,

in which a different regime is triggered when the variable of focus crosses the

particular threshold. In the case of this study, the regime switch occurs if the parity

relationship between commodity prices at linked locations becomes greater than or

less than some value. A common parity relationship that is used to represent spatial

integration among markets can be described as a simple autoregressive structure of

price differences:1

P̃t = δP̃t−1 + νt, (1)

where P̃t = (P 1
t − P 2

t ), P i
t is the price at location i at time t, and νt is a white-noise

error term. To characterize the regime switching framework, we follow Balke and

Fomby to define δ as:

δ =

 δ(1) if |P̃t−1| ≤ c

δ(2) if |P̃t−1| > c
, (2)

where c is the threshold value that causes a regime switch. Specifically, it is assumed

that when |P̃t−1| ≤ c holds, δ(1) = 1. This implies that the parity relationship follows

a random walk when there are small deviations of price differences. However, a large

1This specification can also be expressed as ∆Pt = (δ − 1)Pt−1.
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deviation, such as a shock to the price in either market, will trigger the condition

|P̃t−1| > c, causing δ = δ(2). Under the assumption that a stable equilibrium between

prices at the two spatially separated locations exists, δ(2) < 1, implying that the price

differential process is stationary and shocks to P 1
t or P 2

t will die out over time.

Threshold autoregressive models represent price adjustments as a process that

can be inhibited by transaction costs. As in Goodwin and Piggott (2001), we assume

that there exists a band of transaction costs in which small deviations in a price

pair difference, P̃t−1, do not trigger a regime under which prices adjust back to an

equilibrium. However, if the price difference exceeds the bounds of the transaction

cost band, prices in the two linked markets will continue to adjust until P̃ is no longer

outside of the bounds of the neutral band. An example of this is as follows:

P̃t = θ[δ(1) · P̃t−1] + (1− θ)[δ(2) · P̃t−1] + εt, (3)

where δ1 and δ2 are defined in equation (2). In this threshold autoregressive model

there is a symmetric transaction costs band, such that θ = 0 if |P̃t−1| > τ , and

τ represents the transaction costs threshold. As discussed above, when the price

difference for two markets does not exceed τ , then we set δ(1) = 1 (under the

assumption that P̃ behaves as a random walk). Otherwise, |δ(2)| < 1, and an

adjustment back to an equilibrium occurs.

As noted by Goodwin and Piggott (2001), research that uses threshold autore-

gressive models to analyze price transmissions in spatially separated markets usually

assumes a constant neutral band of transaction costs (for example, see Obstfeld and
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Taylor 1997; Goodwin and Grennes 1998; and Goodwin and Piggott 2001). Fackler

and Goodwin (2001) discuss the implications for the validity of empirical tests of

spatial price analysis if this assumption is made. Additionally, Li and Barrett (1999)

point out that the neutral band may not be constant or stationary in the long run. We

attempt to relax the condition of a constant neutral band by allowing the threshold

variable, τ , to vary according to exogenous factors. This is as follows:

τ = αo + α1Ft + α2S
1
t + α3S

2
t , (4)

where Ft reflects fuel prices (fuel price index), and S1
t and S2

t are seasonality

components that follow a first order Fourier approximation to an unknown seasonal

function. Specifically, S1
t = sin(2πdt/260) and S2

t = cos(2πdt/260), where dt

represents a weekday of the year (dt = 1, 2, . . . , 260).2

Testing for threshold effects is performed by implementing a general nonpara-

metric test for the nonlinearity implied by thresholds in an autoregressive series,

a technique developed by Tsay (1989). To construct the test, consider a simple

autoregressive equation, as follows:

yt = α + φyt−1 + et. (5)

Each combination of yt and yt−1 is denoted as a ‘case’ of the data. These cases are

ordered according to the variable that is relevant to the threshold behavior — in this

2Although a higher degree of the Fourier approximation may be desirable, the computational
complexity of the estimation procedure increases exponentially. Due to this limitation, we restrict
the seasonality modeling to a single-order Fourier approximation.
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case, yt−1. Then, recursive residuals are generated by estimating the autoregressive

model for an initial sample3 and then for sequentially updated samples, which are

obtained by adding a single observation. A test of nonlinearity is given by the F-

statistic from the regression of the recursive residuals on the explanatory variables

(yt−1). The test is run with both increasing and decreasing ordering in the arranged

autoregression.4

To summarize, the estimation methodology is as follows. The time series

properties of the data are evaluated using augmented Dickey-Fuller unit-root tests.

In addition, ordinary least squares estimates of cointegrating relationships (following

Engle and Granger (1987)) are performed. Next, we test for the presence of threshold

effects using a nonparametric test for the nonlinearity implied by thresholds in

an autoregressive series. If the presence of thresholds is determined, we use a

grid search approach to estimate the specific thresholds. Following the technique

that was proposed by Balke and Fomby (1997), the grid search is used to find

the threshold that minimizes a sum of squared errors criterion. We estimate two

alternative specifications: the first assumes a constant transaction costs neutral

band, while the second allows thresholds to vary according to equation (4). We

perform the latter by estimating both symmetric and asymmetric thresholds. A

symmetric threshold assumes that for any two locations, transaction costs for moving

a commodity are the same in either direction. However, this assumption can be

3We denote the first 1% of the data as the initial sample.
4The alternative ordering of the data allows for additional power to discern thresholds for which

data are concentrated in a particular regime at either end of the series. Only the more significant
of the two ordered tests is reported.
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relaxed by estimating asymmetric thresholds, which allows for the transaction costs

associated with transporting the commodity to the central location to be different

from the transaction costs that arise with transporting the commodity from the

central site. The parameters of the symmetric and asymmetric threshold functions are

estimated using a four- and eight-dimensional grid searches, respectively.5 Then, error

correction models are estimated, conditional on the estimated threshold parameters.

These are defined as follows:

∆P̃t = λ∆P̃t−1 + νt, (6)

where P̃t = P c
t − P

j
t is the difference of prices between a central market and market

j.

It is helpful to test the statistical significance of the differences in parameters across

alternative regimes. For instance, a conventional Chow test might be used to test the

parameter differences across regimes. However, in this analysis, the parameters of the

alternative regimes are not identified under the null hypothesis of no threshold effects,

which causes the conventional test statistics to have non-standard distributions. In

order to adjust for this complication, we employ the approach of Hansen (1982) for

testing the statistical significance of threshold effects. Specifically, we run a number of

simulations in which the dependent variable is replaced by draws from the standard

normal distribution, and a grid search is used to identify the optimal thresholds.

5In all cases, the grid search is restricted to ensure that there are a sufficient number of
observations for estimating the parameters of each regime. At least 1% of the total number of
observations are required for each estimation.
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Then, a standard Chow-type test is used to test the significance of the threshold

effects. The simulated sample of test statistics is used to approximate the asymptotic

p-value by calculating the percentage of test statistics for which the test value that is

taken from the estimation sample exceeds the observed test statistic.

Empirical Application to North Carolina Markets

Data

In this study we use daily cash prices for corn and soybeans that are reported by grain

elevators and processors in North Carolina. Specifically, we choose corn markets in

Cofield, Candor, Nashville, and Statesville, and soybean markets Candor, Greenville,

Lumberton, and Fayetteville. To calculate price pairs, we select a central location

based on the smallest average road distance among all pairs. Accordingly, we select

Candor (corn) and Fayetteville (soybeans) as the central locations. Additionally,

we use New York Harbor spot prices for number 2 low sulfur diesel as a proxy for

transportation costs. The data set spans the range between 01 January, 2000 and 24

July, 2008. Some of the observations within the data are missing primarily due to

holidays and days during which the elevators and processors did not report the cash

prices. We exclude dates for which there are missing data in all locations, and use an

exponential spline method to interpolate values for all other unreported data points.

Summary statistics for the data are presented in table 1, and the time series plots

for commodity and diesel prices are shown in figures 1, 2, and 3.

Next, figures 4 and 5 illustrate time series plots of price pairs, P̃t, for corn and
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soybeans. Finally, several basic time series tests are performed. For all market pairs,

the results of the augmented Dickey-Fuller unit-root test, presented in table 2, support

the assumption that price differences are stationary. Additionally, ordinary least

squares estimates of the cointegrating relationship, shown in table 3, indicate that in

all cases the intercept term is close to zero and the slope parameter is close to one.

This may suggest a strong interrelationship among prices in linked markets.6

Table 1: Summary Statistics: Price Pairsa for Selected N.C. Locations

Market Location Obs. Min. Max. Mean Std. Dev. Distanceb

Corn

Cofield–Candor 2217 -0.1182 0.19416 0.05662 0.03997 216
Nashville–Candor 2217 -0.14492 0.17352 0.02105 0.02489 129
Statesville–Candor 2217 -0.12204 0.24464 0.04035 0.05732 95.4

................................................................................................................

Soybeans

Greenville–Fayetteville 2220 -0.10279 0.1789 0.04577 0.02349 113
Cofield–Fayetteville 2220 -0.1092 0.1242 0.02985 0.0244 173
Lumberton–Fayetteville 2220 -0.10279 0.1789 0.04208 0.02294 32.9

a All prices are logged and differenced.
b Road distance between markets, in miles.

6However, these results should be considered with caution, because of the nonstationary nature
of the price data.
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Figure 1: Corn Prices in Selected N.C. Locations
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Figure 2: Soybean Prices in Selected N.C. Locations
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Figure 3: Diesel Fuel Price
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Figure 4: Differenced Logged Corn Price Pairs
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Figure 5: Differenced Logged Soybean Price Pairs
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Table 2: Augmented Dickey-Fuller Test: Price Pairs for Selected N.C. Locations

Market Location Lags τ p-value F-value p-value

Corn

Cofield–Candor 0 -8.45 0.0001 35.74 0.001
1 -6.88 0.0001 23.67 0.001
2 -5.7 0.0001 16.24 0.001

Nashville–Candor 0 -13.07 0.0001 85.47 0.001
1 -11.39 0.0001 64.84 0.001
2 -9.23 0.0001 42.58 0.001

Statesville–Candor 0 -7.61 0.0001 28.93 0.001
1 -6.06 0.0001 18.36 0.001
2 -4.87 0.0001 11.84 0.001

..................................................................................................

Soybeans

Greenville–Fayetteville 0 -7.73 0.001 29.87 0.001
1 -7.18 0.001 25.79 0.001
2 -7.02 0.001 24.64 0.001

Cofield–Fayetteville 0 -7.49 0.001 28.02 0.001
1 -6.74 0.001 22.73 0.001
2 -6.57 0.001 21.56 0.001

Lumberton–Fayetteville 0 -8.58 0.001 36.79 0.001
1 -8.2 0.001 33.66 0.001
2 -8.51 0.001 36.22 0.001
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Table 3: OLS Estimates of Cointegrating Relationships: P 1
t = C + βP 2

t

Market Location C β Model adj−R2

Corn

Cofield – Candor -0.03578 0.9805 0.9811
(0.0032)a (0.00289)

Nashvile – Candor -0.00933 0.98904 0.9927
(0.002) (0.0018)

Statesville – Candor 0.04517 0.91994 0.9631
(0.00424) (0.00383)

...........................................................................

Soybeans

Greenville – Fayetteville -0.10095 1.02969 0.9952
(0.00285) (0.00151)

Cofield – Fayetteville -0.06986 1.02153 0.9943
(0.00309) (0.00164)

Lumberton – Fayetteville -0.0521 1.00539 0.9944
(0.00301) (0.0016)

a Standard errors in parentheses. *** indicates significance at the 1% level, **
indicates significance at the 5% level, * indicates significance at the 10% level
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Results for Empirical Application7

The first part of the empirical estimation is the identification of the appropriate

transaction cost bands for each market combination. Since there are numerous costs

relevant to spatial arbitrage and trade, it is virtually impossible to directly measure

the transaction costs that affect the transfer of a particular commodity between two

locations. Given these difficulties, we use the modeling techniques described above

to estimate the transaction cost bands. First, we estimate unrestricted and restricted

forms of a first-order threshold autoregressive specification (as defined in equation

(6)), for which we assume constant transaction cost bands. The unrestricted model

estimates separate autoregressive parameters for the regime that corresponds to price

differences that are less than the transaction cost band, and the regime corresponding

to price differences exceeding the band. This model is used to test for the significance

of threshold effects by using Hansen’s testing procedure. The restricted specification

follows Obstfeld and Taylor (1997), restricting the within-band parameter to be

zero, which corresponds to a random walk for price differences that do not exceed

the transactions cost band. Then, we estimate the alternative models that allow

the thresholds to vary according to transportation costs and seasonal factors, as in

equation (4). Both symmetric and asymmetric variable thresholds are estimated.

The estimates of the threshold band are presented in table 4 and table 5. For corn,

the neutral band that represents the smallest price differences is at about 8.9–10.2%

(Candor–Nashville), while for soybeans, the smallest neutral band is about 6.9–9.2%

(Fayetteville–Greenville). The largest is at about 22.4–24.3% for corn (Candor–

7All estimations were performed using the SAS v9.1.3 analysis software.
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Statesville) and at about 13.1% for soybeans (Fayetteville–Lumberton).8 These

relationships can be used to indicate linkage strengths in each market pair because

the neutral band reflects the price differences that are required to trigger equilibrating

conditions. For example, price differences of soybeans between Fayetteville and

Greenville need to exceed only 9.2% in order to trigger conditions that will drive

prices back to the market pair equilibrium, while for Fayetteville and Lumberton, the

price differences would need to exceed 13.1%.

Also in tables 4 and 5, we present the parameter estimates of the variable threshold

autoregressive models. For the symmetric and asymmetric cases, we used a grid search

to determine parameters, which does not permit for a direct statistical significance

inference of the parameter estimates. However, bootstrapping was performed to

determine the standard errors of each value.9 Using the results of the grid search

estimates, it is possible to understand the overall effects that each component of the

threshold model has on the transaction cost neutral band.

In both the symmetric and asymmetric specifications, it is not surprising to find

that, typically, diesel prices have a significant effect on the thresholds. Additionally,

in almost all cases (the exception being the Candor–Statesville market pair), both

the symmetric and asymmetric variable threshold models indicate that higher fuel

8It is somewhat surprising that the Candor–Statesville market pair indicates the largest neutral
band even though these are the geographically closest corn markets in the analysis. This might be
due to various reasons: we do not have information about the volume of trade, which, if low, can
contribute to the large neutral band; a large body of water separates the two markets; there are
various grain transportation laws, which could be enforced with greater strictness near Statesville.

9Estimation of grid searches for large data sets requires a significant amount of computing
power. Due to this, bootstrapping for the symmetric and asymmetric variable threshold models
was restricted to 200 iterations.
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prices imply a wider neutral band. This is intuitive in the sense that higher

transportation costs would cause price pairs to increase. The coefficients for the

seasonality components, in most cases, also have significant effects on the neutral

band. However, the direction and magnitude of these effects varies across market

pairs and across commodities.10

The comparison of the constant, symmetric, and asymmetric thresholds models

indicates that there exist similarities among the constant and asymmetric variable

threshold models. For the constant and asymmetric thresholds specifications, the

estimates imply that the variation that exists in the variable thresholds is concentrated

around the thresholds implied by a constant threshold model.11 However, the

parameters of the symmetric variable threshold model are questionable, implying a

transaction cost band that is unreasonably wide. This may be due to the inability of

the symmetric variable threshold specification to appropriately account for different

price parity behavior at the endpoints of the observed time series.12 An asymmetric

variable thresholds model, however, is more flexible, which is supported in all cases

by its better fit to the data (see table 6) as well as a more intuitive representation

of the transactions costs band. In light of this, the asymmetric variable thresholds

model is preferred over the symmetric variable thresholds model.

10It should be noted that it is difficult to fully identify deterministic seasonal components and the
effects of diesel prices because the fuel prices are likely influenced by seasonality as well.

11We compare the thresholds estimates that are produced by the restricted model. Estimates from
the unrestricted constant thresholds model are insignificantly different.

12In an attempt to decrease the influence of endpoints on the estimation of the symmetric variable
thresholds specification, we restricted the data set to 99%, 95%, 90%, and 85% of all available data
points. However, in all cases, the symmetric variable thresholds model exhibits the same abnormal
behavior.
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Figure 6 illustrates the threshold bands that are estimated by each model for

corn and soybeans.13 Although the asymmetric variable thresholds are concentrated

around the constant thresholds, in almost all cases the variable thresholds indicate a

widening of the band toward the end of the time series. This may indicate that in

longer time series data, the variable thresholds models can better represent long-

run behavior of the neutral transaction band. Additionally, the lower threshold

may be less concentrated around the constant threshold than the associated upper

threshold, and vice versa. This is most evident in the case of the Fayetteville-Cofield

and Fayetteville-Lumberton soybean price pairs.14 This might imply that for longer

time series, estimates of the autoregressive parameters are likely to be sensitive to

the assumption of constant thresholds, which has been noted by Barrett (2001).

In general, the estimates of the asymmetric variable thresholds models indicate

that the band is typically smaller (narrower) later in the calendar year around the

time that the new crop harvest in North Carolina becomes available. In general, this

conforms with intuition because new harvest induces less intra-state trading, since

locally produced commodities are in use. Conversely, the band increases (broadens)

earlier in the calendar when intra-state trading is more prominent. These effects are

confirmed in figure 7, which plots the seasonality component of price bands over 260

weekdays (a calendar year).

Table 7 presents the autoregressive parameter estimates and the associated half-

13In figure 6a we present the threshold bands implied by all three specifications in order to illustrate
the poor fit of the symmetric variable thresholds model.

14This might be an indication of the different ways that transportation costs and seasonality
factors affect transaction costs, depending on the direction in which the commodity is transported.
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(a) Thresholds Model Estimates – Candor-Cofield (Corn)

(b) Thresholds Model Estimates – Candor-Nashville (Corn)

Figure 6: Comparison of Threshold Model Estimates
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(c) Thresholds Model Estimates – Candor-Statesville
(Corn)

(d) Thresholds Model Estimates – Fayetteville-Greenville
(Soybeans)

Figure 6: Continued

25



(e) Thresholds Model Estimates – Fayetteville-Cofield
(Soybeans)

(f) Thresholds Model Estimates – Fayetteville-Lumberton
(Soybeans)

Figure 6: Continued
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(a) Upper Band

(b) Lower Band

Figure 7: Seasonality Component of Asymmetric Variable Thresholds Model
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Table 6: Comparisons of Sum of Squared Errors for Alternative Models

AR TAR TAR TAR
(Constant τ) (Symmetric τ) (Asymmetric τ)

Corn
Candor-Cofield 0.40621 0.40082 0.25741 0.24912

Candor-Nashville 0.34607 0.34051 0.24297 0.23885

Candor-Statesville 0.67721 0.61355 0.57279 0.5477

Soybeans
Fayetteville-Greenville 0.12468 0.12223 0.12445 0.12392

Fayetteville-Cofield 0.12468 0.12456 0.12226 0.12052

Fayetteville-Lumberton 0.1429 0.14168 0.14097 0.13871

lives15 for the alternative models. Half-lives are a measure of market integration in

that their values indicate the degree to which the price pairs move toward equilibrium

after a shock. In almost every case, the models that do not incorporate threshold

effects imply longer half-lives, which suggests that ignoring thresholds will bias the

adjustment parameters toward zero, and variable threshold specifications indicate

even smaller half-lives in four of the six market pairs. In general, for corn, half-

lives are smaller (twice as small in many cases) than the half-lives for soybeans,

implying a faster adjustment of price parities – and stronger market integration – in

North Carolina corn markets. Thus, if threshold effects are not taken into account,

price parity models can incorrectly imply a lower degree of market integration.

15Half-lives represent the period of time that is required for one-half of a deviation from price
parity to be eliminated. The half-life for an estimated adjustment coefficient, λ̂, is − ln(2)/ ln(1+ λ̂).
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Additionally, table 8 contains Tsay’s test for threshold effects and Hansen’s test for

differences in parameters across different regimes. In every case, both test statistics

are highly significant, which indicates a strong presence of threshold effects and

difference of parameters across regimes.

Overall, this analysis confirms the presence of threshold effects in price linkages

that exist in corn markets and soybean markets within North Carolina. In this

data set, we find that the asymmetric variable threshold model best fits the data,

and the variability is closely clustered around the constant thresholds. However, in

this rich time series data set, the asymmetric variable threshold model estimates

capture the widening of the transaction cost band around and after year 2005. These

changes correspond to contemporaneous rises in fuel prices, increased variability of

corn and soybean prices, and enactment of the Energy Policy Act of 2005 and Energy

Independence and Security Act of 200716 The potential effects on corn and soybean

prices that may be triggered by external shocks are a motivation for analyzing impulse

responses.

16The Energy Policy Act of 2005 increased the standards for the use of ethanol-based fuels in the
United States. This resulted in a rise in the demand for ethanol-based fuel production, causing a rise
in the price of corn, and an associated increase of soybean prices. Similarly, the Energy Independence
and Security Act of 2007 appropriated taxpayer funding for promoting the production of biofuels in
the following 15 years.

29



T
ab

le
7:

T
h
re

sh
ol

d
A

u
to

re
gr

es
si

ve
M

o
d
el

E
st

im
at

es

A
R

H
a
lf

L
if
e

a
U

-T
A

R
U

-T
A

R
H

a
lf

L
if
e

T
A

R
H

a
lf

L
if
e

T
A

R
H

a
lf

L
if
e

T
A

R
H

a
lf

L
if
e

λ
in

λ
o
u

t
λ

o
u

t
λ

o
u

t
λ

o
u

t

(C
o
n

st
.)

(S
y
m

m
.)

(A
sy

m
.)

C
o
r
n C

a
n

d
o
r-

C
o
fi

el
d

-0
.2

3
2
8
3

2
.6

1
5
2

-0
.3

5
1
3

0
.4

4
5
1

1
.1

7
6
9

0
.3

5
9
2

1
.5

5
7
5

-0
.3

1
0
8

1
.8

6
2
2

0
.2

5
7
3

2
.3

3
0
2

(0
.0

2
0
4
4
)b

(0
.0

2
0
5
5
)

(0
.0

5
3
2
7
)

(0
.0

6
1
1
)

(0
.0

1
2
4
7
)

(0
.1

1
9
3
)

C
a
n

d
o
r-

N
a
sh

v
il
le

-0
.2

1
9
9

2
.7

9
1
2

-0
.3

7
1
9

0
.2

7
4
3

2
.1

6
1
9

0
.2

7
3
4

2
.1

7
0
3

-0
.2

8
9
9

2
.0

2
4
7

-0
.3

1
1
4

1
.8

5
7
8

(0
.0

2
0
2
9
)

(0
.0

2
0
7
9
)

(0
.0

4
7
3
2
)

(0
.0

5
0
8
)

(0
.0

1
3
6
3
)

(0
.0

2
2
7
)

C
a
n

d
o
r-

S
ta

te
sv

il
le

-0
.2

4
6
7
3

2
.4

4
6
4

-0
.3

7
8
2
3

0
.4

0
5
8
6

1
.3

3
1
3

0
.4

8
4
3

1
.0

4
6
7

-0
.2

2
0
9

2
.7

7
6
9

-0
.1

7
3
6

3
.6

3
5
2

(0
.0

2
0
3
9
)

(0
.0

2
1
2
8
)

(0
.0

4
7
8
9
)

(0
.0

6
3
3
)

(0
.0

1
4
4
)

(0
.0

4
8
8
)

S
o
y
b
e
a
n
s

F
a
y
et

te
v
il
le

-G
re

en
v
il
le

-0
.1

0
7
9
9

6
.0

6
5
5

-0
.1

8
7
8
2

-0
.0

5
9
9

1
1
.2

2
1
6

-0
.1

0
8

6
.0

6
4
9

-0
.1

0
5
3

6
.2

2
9
6

-0
.1

2
6
7

5
.1

1
6
4

(0
.0

2
1
0
3
)

(0
.0

3
0
2
)

(0
.0

2
9
1
1
)

(0
.0

2
9
3
7
)

(0
.0

3
7
6
)

(0
.0

4
0
5
)

F
a
y
et

te
v
il
le

-C
o
fi

el
d

-0
.1

3
4
1
9

4
.8

1
0
5

-0
.1

7
8

-0
.0

6
9
9

9
.5

6
5
5

-0
.0

6
9
9

9
.5

6
5
5

-0
.1

4
5

4
.4

2
4
7

-0
.1

5
5
5

4
.1

0
1
2

(0
.0

2
0
9
4
)

(0
.0

2
4
3
6
)

(0
.0

3
9
8
)

(0
.0

4
0
3
)

(0
.0

1
7
7
5
)

(0
.0

3
1
9
)

F
a
y
et

te
v
il
le

-L
u

m
b

er
to

n
-0

.0
8
5
9
1

7
.7

1
6
5

-0
.1

0
6
7
6

-0
.1

1
6
4

5
.6

0
1
2

-0
.1

1
6
5

5
.5

9
6
0

-0
.1

0
0
8

6
.5

2
3
8

-0
.1

7
8
7

3
.5

2
0
9

(0
.0

2
1
0
8
)

(0
.0

2
5
7
5
)

(0
.0

3
7
1
)

(0
.0

3
7
3
)

(0
.0

3
4
7
5
)

(0
.0

3
4
7
)

a
H

a
lf

-l
iv

es
in

d
ic

a
te

th
e

w
ee

k
d

a
y
s

re
q
u

ir
ed

fo
r

o
n

e-
h

a
lf

o
f

a
d

ev
ia

ti
o
n

fr
o
m

eq
u

il
ib

ri
u

m
to

b
e

el
im

in
a
te

d
.

b
N

u
m

b
er

s
in

p
a
re

n
th

es
es

a
re

st
a
n

d
a
rd

er
ro

rs
.

30



Table 8: Tests for Thresholds Effects and Nonlinearity

Tsay’s Test Hansen’s Test

Corn
Candor-Cofield 7.51E4 297.4437

[0.0001]a [0.0001]
Candor-Nashville 3.45E5 349.2374

[0.0001] [0.0001]
Candor-Statesville 1.59E5 218.8642

[0.0001] [0.0001]
Soybeans

Fayetteville-Greenville 8.68E4 43.9998
[0.0001] [0.0001]

Fayetteville-Cofield 4.34E5 57.3766
[0.0001] [0.0001]

Fayetteville-Lumberton 2.95E5 46.8915
[0.0001] [0.0001]

a Numbers in brackets are probability values associated with test statistics.
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Impulse Response Analysis

A useful approach to analyzing the dynamic relationship among market price pairs is

through impulse response functions, which can be used to examine the responses of

prices and price pairs to shocks. For instance, it might be of interest to observe the

effects on prices if there is a decision to build an ethanol-fuel production facility near

one of the corn markets, such as the 110 million gallon corn-ethanol plant proposed to

be built by East Coast Ethanol, LLC in 2008. The plant is proposed to be constructed

in Northampton county, North Carolina – 36 miles west of Cofield, NC and 53 miles

north-east of Nashville, NC. Due to the proximity of the ethanol plant site to the two

corn processor sites, it is expected that a rise in the demand for corn17 will trigger an

associated rise in prices, which may impact, through market linkages, prices in other

North Carolina corn markets.

Similarly, shocks to the poultry industry in eastern North Carolina may lead to

associated demand and price responses in North Carolina soybean markets. The

economic recession of 2008-09 has placed significant financial pressures on major

poultry processors such as Pilgrim’s Pride, causing the company to file for bankruptcy

in December, 2008 and cutting 50 growers in North Carolina. Because soybeans

are an important input to poultry production, incidents such as the Pilgrim’s Pride

bankruptcy may lead to an associated decrease in the demand for soybeans in eastern

North Carolina. However, because North Carolina soybean markets are linked (as

shown above), the price shocks in a particular geographical region may be transmitted

17On average, 2.8 bushels of corn are required to produce 1 gallon of corn-ethanol. This implies
that for a 110 million gallon corn-ethanol plant, 308 million bushels of corn are required to maintain
full production capacity.
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to soybean markets in other parts of the state. By implementing impulse response

functions, it is possible to learn about such price transmission behavior within

interrelated markets.

We examine post-shock response of both the price parity relationship and

individual prices in linked markets. A nonlinear impulse response function is

used, which defines a response, Ωt+r, as a function of all previously observed data

(it, it−1, . . .) and a shock (ψ). Thus, for both markets we select the last observation

in our data set (31 July, 2008) to determine the responses to negative and positive

shocks.18 This approach is consistent with previous studies that examine price linkage

behavior in agricultural markets, such as Goodwin and Piggott (2001) and Balagtas

and Holt (2009). Specifically,

Ωt+r = E[It+r|It = it + ψ, It−1 = it−1, . . .]− E[It+r|It = it, It−1 = it−1, . . .]. (7)

It is necessary to note the nonstationarity of price data as well as the error correction

properties. Due to these factors, shocks may elicit responses that are temporary, such

that there is a return to the initial time path of the variables, or permanent, causing

a persistent shift in the time path. For all analyses, we used a one-half standard

deviation as the shock amount.

18As discussed in Gallant, Rossi, and Tauchen (1993), Potter (1995), and Koop, Pesaran, and
Potter (1996), an alternative approach is to observe the effects of a particular shock on all possible
histories. The difficulty, however, is appropriately summarizing the information attained by applying
a shock to the various historical data. A frequent method is to average the outcomes; however, this
may result in a loss of important information. For example, averaging can difference out discrepancies
that might exist in the various impulse responses or weaken the effects of asymmetric shocks.
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Figure 8 illustrates the responses to positive and negative shocks of the price

parity relationships between a central market and an auxiliary market j. For corn,

the shock responses end between 10 and 20 weekdays (approximately one to two

weeks), while all of the shock responses in the soybean markets last under one week.

Additionally, five of the six market pairs exhibit a movement back toward the original

price parity relationship; only in the Candor–Cofield market pair, the resulting price

pair relationship is greater than the initial shock amount.

Figure 8: Long-run Impulse Response Functions: Asymmetric Variable Thresholds
Model
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In addition to examining the impulse responses of long-run price pair relationships,

we use a generalized threshold autoregressive model, which allows for short-run

components of price interrelationships. Using the generalized threshold autoregressive

specification, we can attempt to better capture the dynamic aspects of linked market

price pairs after a shock to the price of a particular market. Unlike the long-run

impulse functions, which can be used to examine the post-shock path of the price

pair, short-run impulse response functions can be used to observe the individual price

paths in each market. Specifically, we consider the following model,

P̃t = θ[α(1) + Θ(1)∆Pt−1 + λ(1)zt−1]

+(1− θ)[α(2) + Θ(2)∆Pt−1 + λ(2)zt−1] + εt,
(8)

where P̃t is an (n × 1) vector of price differences, such that the first element

(P̃1t) represents price differences in the central market and the second element (P̃2t)

represents the price differences in the jth market. Additionally, α is an (n× 1) vector

of constants, Θ is an (n×n) matrix of coefficients on the differences of lagged prices,

and λ is an (n×1) vector of coefficients on the error vector correction term.19 Finally,

ε is an (n× 1) vector of error terms.

Similar to equation (3), there is a transaction costs band, such that

θ =

 1 if zt−1 T τt

0 otherwise
, (9)

19We assume that price differences between markets that do not exceed the transaction cost band
follow a random walk. This corresponds to following: zt−1 = P1,t−1 − P2,t−1.
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We allow for asymmetries in the transaction costs bands according to the threshold

variable, τt, where τ is defined in equation (4). We estimate short-run impulse

response functions for constant and asymmetric variable threshold models. In order

to incorporate variable thresholds, we perform in-sample impulse response functions,

which use parameters estimated in section .

Figure 9 illustrates responses to positive and negative shocks to prices in the

central market for the constant and variable thresholds models. Similarly, figure 10

shows responses to price shocks in the jth market. In almost all cases, the initial price

responses are as expected, in that the larger response is associated with the market

in which the shock occurred. Additionally, the nonstationarity of the price series is

reflected in the permanent shifts of the price paths after a shock. Generally, positive

shocks lead to prices equilibrating at a higher level in both of the linked markets,

and conversely, negative shocks lead to price equilibration at lower levels. This might

imply that, although equilibration of the price pair relationship occurs, the market in

which the price shock transpires influences the direction and level at which the price

pair equilibrates. However, in some instances, we observe negative shocks leading

to price equilibration at a level that is higher than the pre-shock price level.20 This

type of outcome is only evident in the richer asymmetric variable thresholds model;

specifically, in the Fayetteville–Cofield market pair.

Also, although the direction and general time path of the impulse response

functions are similar for markets across models, the magnitude of the impulse response

20Similarly, positive shocks can lead to price equilibration at a level that is lower than the price
level before the shock.
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(a) Constant Thresholds Model

(b) Asymmetric Thresholds Model

Figure 9: Short-run Impulse Response Functions: Shock to the Central Market Price
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(a) Constant Thresholds Model

(b) Asymmetric Thresholds Model

Figure 10: Short-run Impulse Response Functions: Shock to the jth Market Price
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as well as the time path of the price variable are noticeably different in the different

specifications. First, it is almost always the case that when using the asymmetric

variable threshold model parameters, shocks in the central and auxiliary markets lead

to larger price movements, which often results in greater post-shock price differences.

Additionally, unlike the time path of the price variable that is characterized by the

constant thresholds model, the price movements in the asymmetric variable thresholds

model often exhibit jumps across regimes. These differences can be attributed to

allowing the neutral transaction costs band to vary according to external factors.

Despite the important differences that surface when the variable thresholds model

is used, the price behavior that is exhibited in both specifications strongly supports

long-run market integration. This result is consistent with the findings of Goodwin

and Piggott (2001). Regardless of whether isolated price shocks occur in the central

or auxiliary market, the impulse responses reflect behavior that is consistent with

converging prices. In general, when a price in the central market is shocked, there is a

longer time-to-convergence than that of a shock to the jth auxiliary market. However,

the time-to-convergence is typically longer in the asymmetric variable thresholds

model, which might be due (as above) to the effects of external factors on the neutral

transaction costs band. While responses to market shocks begin to expire in 10–

15 weekdays in the constant thresholds specification, the responses in the variable

thresholds model typically last 20–30 weekdays.

Overall, the comparison of impulse response functions using the alternate

specifications indicates that the constant thresholds model may underestimate the

time-to-convergence as well as the magnitude of the effect that a shock can have on
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prices in linked markets. Relaxing the assumption of a constant transaction costs

band by allowing thresholds to vary according to external factors can lead to an

improved representation of price parity relationships in interrelated markets. This

can be crucial in examining the potential effects of policy as well as other events that

can trigger shocks to North Carolina corn and soybean markets.

Conclusion

This analysis examines spatial price linkages in North Carolina corn markets and

soybean markets by using asymmetric, threshold autoregressive and error correction

models. The primary motivation was to remove several restrictive assumptions that

have been used in previous literature. Specifically, we allow thresholds to vary

according to external factors, such as a fuel price index and seasonality effects,

implying an analysis of linked price dynamics with a variable neutral transactions

costs band. This extends the analyses within the existing literature, which restricts

the band to be constant.

In general, our results confirm the findings of Goodwin and Piggott (2001).

The variable thresholds models indicate that prices in North Carolina corn and

soybean markets are highly interrelated, but the statistically significant presence

of threshold effects may influence the price linkages in the spatially separated

markets. However, relative to constant thresholds models, specifications that

allowed for variable thresholds had a better fit to the data and implied faster

adjustments to deviations from spatial equilibrium. Specifically, asymmetric variable
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thresholds model typically outperformed the alternative constant and symmetric

variable thresholds specifications.

Additionally, we use nonlinear impulse response functions to evaluate the behavior

of dynamic adjustments to localized price shocks. In both the constant and variable

thresholds models, the responses strongly suggest high market integration and quick

equilibration of price paths. However, in many cases the magnitude of the post-

shock price change as well as the time-to-convergence are larger when the asymmetric

variable thresholds model is used. This might imply that using a model that assumes

a constant transaction costs band may lead to underestimating the overall post-shock

price effects in North Carolina corn and soybean markets.
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