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Abstract

In this paper I examine the relationship between social network con-
nections and profitability of a newly introduced agricultural commod-
ity in Ghana. Using vector autoregression techniques, I illustrate the
bidirectional causality between the dynamics of profits earned from a
new agricultural crop and information obtained from one’s social net-
work. In particular, the data suggest both that greater information
from the social network drives farmer profits in the new commodity
and also that profitability drives information network development.
This implies that less well-connected farmers have a smaller chance of
success with the new crop and their information networks are subse-
quently impacted by these low profits. Spreading the benefits of new
agricultural technologies may thus involve significant investments in
information supply at the community level.
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1 Introduction

The introduction of new technologies into farming communities in develop-
ing countries has the potential to greatly reduce the incidence of poverty and
improve the well-being of these populations. But farmers interested in using
a new technology may not possess all of the relevant information about it
(Bardhan and Udry, 1999; Evenson and Westphal, 1995; Feder, Just, and
Zilberman, 1985). Eventual success with the new technology has been shown
to partly depend on the availability of information about its specific charac-
teristics (Bandiera and Rasul, 2006; Foster and Rosenzweig, 1995).

For farmers in developing countries, access to such information can be
quite limited. In the case of a new crop that a farmer wishes to try, gov-
ernment supported extension services may not be available in all areas, and
there may be little scope for contract farming arrangements, which are of-
ten implemented with strict guidelines on how to grow a new crop. In such
cases, an important source of information is the farmer’s own social network
of family, friends and neighbors. Social networks have been shown in sev-
eral studies to influence both the adoption and management of new crops
(Bandiera and Rasul, 2006; Conley and Udry, 2009).

Given that farmers rely heavily on information from their social networks
when learning about and using new technologies on their farms, differences
in information availability can have a critical impact on farmer revenues.
For example, Foster and Rosenzweig (1995) develop a target input learn-
ing model that relates farm profits to the number of ‘experimental trials’of
a new technology, either by the farmer on their own (‘learning by doing’)
or from information gained through experiments conducted by information
neighbors (‘learning from others’). They show that both own and other’s
information experiments positively influenced the profitability of high-yield
variety (HYV) seeds in India during the Green Revolution, as well as the
likelihood of adoption.

In many of the existing studies of technology adoption and social networks
and learning, analysts often have to assume that information availability
is uniform throughout a farmer’ s village, primarily because data on more
detailed social network connections is not available (Foster and Rosenzweig,
1995; Munshi, 2004). However, Conley and Udry (2001) have demonstrated
that not everyone in a village knows each other and that there is a lot of
variability in access to information at the village level. Therefore, it is very
likely that within a village, the technology adoption, diffusion and social
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learning processes will vary across households partly as a result of variable
information availability. Using village level aggregates also does not provide
information on how the benefits of new technologies are distributed among
individual households, which may be of particular concern if the purpose of
the new technology is poverty reduction.

Even when detailed social network data are available, estimating the ef-
fects of information obtained from a farmer’ s social network on new tech-
nology adoption and profitability is complicated by the fact that social net-
works are clearly farmer choice variables.1 Recent work shows that income
and wealth status influence the likelihood of a social connection (Santos and
Barrett, 2005).2 Thus, information is very likely endogenous in the relation-
ship between profits from a new technology and information about it from
one’ s social network. It may be difficult to determine whether farmers are
successful because of access to information, or if they have access to infor-
mation because they are successful. It may also be hard to find instruments
for information from a social network structure that are not related to the
profit outcome variable.

The bidirectional causality between social network formation and the
profitability of new technology suggested by the existing research cited above,
in addition to making estimation of the one-way relationships between these
two variables difficult, may also be of interest in its own right. Given that in-
formation flows affect farmer profits in new crops, and farmer incomes in part
determine social network connections, it is possible that farmers with strong
social networks that undertake a new technology may have a better chance of
success with the new technology which will enable them to maintain and even
expand their own social network, while farmers who have few contacts may be
less likely to profit from their experiments, further limiting their chances for
obtaining critical information for future success. Social invisibility has been
shown to be responsible for other aspects of endemic poverty, such as incom-
plete risk sharing (Vanderpuye-Orgle and Barrett, 2007), further hampering
the ability of less well-connected farmers to lift themselves out of poverty.
Similar feedback relationships have been suggested to explain persistent wage
inequality between different sectors of the labor market (Calvó-Armengol and

1Social networks are often identified by responses to survey questions put to farmers
about who they turn to for assistance or advice about farming (Bandiera and Rasul, 2006;
Conley and Udry, 2009; de Weerdt and Dercon, 2006).

2Fafchamps and Gubert (2007) analyze the determinants of the formation of networks
to share income risk in the Phillipines.

3



Jackson, 2007).
In terms of the prospects for poverty reduction via the introduction of

new crops and other technologies, such social invisibility may thus lead to
difficulty in adopting and using new technologies which may lead to even
more limited social visibility. This possibility implies a different dynamic
in technology diffusion than the one of ‘strategic delay’suggested by Foster
and Rosenzweig (1995) and Bandiera and Rasul (2006). Socially invisible
farmers likely do not receive information spillovers from early adopters and
thus may never adopt. And, if they do, they may not be able to achieve
the same level of success as farmers with more extensive networks, with
consequences for future social network development. This characteristic of
technology adoption and diffusion has not been explored in depth, but may
be important in explaining different rates of diffusion of new technologies and
subsequent welfare outcomes. It has been noted by many authors that new
technology diffusion is typically incomplete in developing countries (Feder,
Just, and Zilberman, 1985). The analysis in this paper may provide insight
into another reason this might be the case.

With time series data on technology use and social network formation, it
is possible to explore these feedback relationships, as well as account for the
endogeneity of social network formation, with the use of vector autoregression
techniques. However, due to an absence of data on both of these variables for
the same set of individuals, this has not yet been attempted in the technology
adoption literature. But, with some recently collected, very detailed data on
profits and social network formation, I am able to overcome this difficulty.

In particular, I apply the vector autoregression for panel data methods
of Holtz-Eakin, Newey, and Rosen (1988) to data on profits from pineapple
farming and changing information about pineapple crop management (based
on a measure of experience with the new crop) from the social networks of
pineapple farmers in three villages in Ghana over six distinct time periods
between January and August 1998.3 The methods of Holtz-Eakin, Newey,
and Rosen (1988, 1989) are well-suited to systems of bidirectional causal-
ity, and have been used previously to look at the relationship between labor
hours and wages (Holtz-Eakin, Newey, and Rosen, 1988) and government ex-
penditures and revenues (Holtz-Eakin, Newey, and Rosen, 1989). The results
for the Ghanaian pineapple farmers clearly show the bidirectional relation-

3One time period equals to six weeks. A full description of the data can be found in
Goldstein and Udry (1999).
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ship between profitability with a new technology and information network
dynamics, with information levels from the farmer’ s social network affecting
profitability and profitability affecting the level of information available to
the farmer. Granger causality tests show further that information flows can
be said to Granger cause profitability over time, in line with other work on
social learning and new technology use (Foster and Rosenzweig, 1995) and
also that profitability drives information flows in a similar manner. Informa-
tion from one’ s social network changes both through the total experience of
farmers in the network as well as through the changing composition of the
network itself, brought on by farmers making different choices on informa-
tion network partners over time. The results in this paper indicate that new
technologies can affect information network dynamics, perhaps through both
of these channels. This will in turn have an impact on the overall success
with the technology itself in later periods.

2 Modeling Profit Growth and Information

Dynamics

To motivate the vector autoregression (VAR) model of profits and informa-
tion flows, I briefly outline the structural and reduced form equations for
profitability and information network structure that can be used to generate
the system of time-varying variables for the VAR.

2.1 Own profits

Farmer profits from a new agricultural crop are uncertain due to the fact
that farmers may lack useful information about the management of the crop
during the growing period. Foster and Rosenzweig (1995) characterize this
uncertainty with a target input model adapted to agricultural production.
In their model, the currently appropriate level of inputs for one unit of the
agricultural crop is a random variable (θ̄it = θ∗ + uit), with expected value
θ∗ and is unknown to farmer i until the time of harvest. Profits πit per unit
of the new crop planted are therefore:

πit = η − (θit − θ̄it)2 (1)

with θit representing the actual level of inputs applied to the crop and η
representing the maximum profits possible for the new crop.
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Foster and Rosenzweig (1995) show that the expected profits for the new
crop are a function of the farmer’s posterior beliefs about the variance of
the optimal level of inputs, θ∗. The farmer employs Bayesian updating to
minimize this uncertainty by observing repeated trials with the new technol-
ogy. These trials can either represent the farmer’s own cumulative experience
Oit or in the sum of all of the trials with the new crop of their information
neighbors Iit. Following Foster and Rosenzweig, in reduced form, I represent
profits for farm i at time t (πit) as:

πit = F (Oit, Iit, µi, εit) (2)

where Oit represents the cumulative amount of information gained through
the farmer’ s own experience with the new technology, and Iit represents the
cumulative information available to farmer i from farmers in i′s information
network. µi is an unobserved farmer effect that may influence profits, and
εit is an idiosyncratic year/farm shock to profits. Lagged own profits in part
determine the ability to experiment with the new crop. In my final model,
own information is therefore simplified and represented by m lags of profits
from growing pineapple. Thus, Oit ≡ (πit−1, . . . , πit−m).

2.2 Information flows

Santos and Barrett (2005) and Fafchamps and Gubert (2007) outline models
of social network formation that use social distance to estimate the probabil-
ity of a link between two individuals i and j. These link probabilities (Pijt)
depend upon the characteristics of each individual (xi, xj) both directly and
in terms of a function describing some measure of the differences between rel-
evant characteristics to describe social distance f(xi, xj). I assume that the
following considerations are important for farmer i in obtaining information
from potential social network partner j:

1. Household j has ‘good information ’ (πjt−1 ≥ πit−1)

2. Household j is willing to share information with household i (Pijt > 0)

I thus model the total amount of information available to farmer i at time t
(Iit) as the sum of all of the information (Njt) from farmer i’s potential infor-
mation neighbors at time t (j = 1, 2, . . . , NBI)

4 multiplied by the probability

4NBi is the total number of individuals in farmer i’s information neighborhood. Thus,
NBi varies in number over each individual.
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of a linkage between farmer i and neighbor j at time t, Pijt. In this paper, I
am interested in whether profitability from growing pineapples, πit, is a fac-
tor in determining information flows. From a strategic perspective, relative
profitability with the new crop matters as it determines which individuals a
farmer will seek out to obtain additional information. Relative profitability
may also be considered as one dimension of an individual’ s characteristics
that determine social distance. Generally, the relationship between informa-
tion levels and profits can be represented as:

Iit =

NBi∑
j

Pijt(πit, πjt, xit, xjt, f(πit, πjt, xit, xjt)) •Njt (3)

or, in reduced form:

Iit = F (πit, πjt, xit, xjt, Njt, NBi) (4)

Thus, drawing upon the works cited above, I can test the extent of the
feedback between farmer profits (πit) and information (Iit) by estimating the
following vector autoregression model:

πit = απ0t +
m+1∑
k=1

βπktπi,t−k +
m+1∑
k=1

γπktIi,t−k + Ψπ
t µi + επit

Iit = αI0t +
m+1∑
k=1

βIktπi,t−k +
m+1∑
k=1

γIktIi,t−k + ΨI
tµi + εIit

(i = 1, . . . , N, t = 1, . . . , T )

(5)

with m representing the number of time lags appropriate for the VAR and
(µi) indicating farmer fixed effects. Profits and information are thus both
assumed to be endogenous.5 Analysis of the α, β and γ parameters provides
information on the effects of changing farmer profits and information on
each other. As well, the system in (5) provides a framework for conducting
causality tests between each of these variables.

5As individual characteristics, xi are not changing over time, they have been excluded
from the Iit equation in the model and are assumed to operate on profits and information
levels exclusively through the unobserved individual effect, µi. The Njt and NBi vari-
ables are implicitly included in the model through the method of constructing the final
information variable, which is described in detail in a subsequent section.
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In order to estimate the parameters in (5) and account for unobserved
farmer heterogeneity (µi), I follow Holtz-Eakin, Newey, and Rosen (1988)
and apply quasi-differencing to the model. Quasi-differencing is a method
suggested by Chamberlain (1983) that allows for consistent estimation of
parameters in a panel data model with lagged endogenous variables, as tra-
ditional fixed effects techniques, such as first differencing, result in biased
estimates (Nickell, 1981). The method involves treating the parameter on
the fixed effect as time-varying (shown in (5) as Ψt) and transforming the
system by multiplying the system in time t−1 by the ratio of the fixed effect
parameter in time t to the parameter in time t− 1 (i.e. rt = Ψt/Ψt−1). This
procedure is outlined in more detail in the appendix.

After quasi-differencing, actual estimation is carried out on the following
transformed model:

πit = aπ0t +
m+1∑
k=1

bπktπi,t−k +
m+1∑
k=1

dπktIi,t−k + eπit

Iit = aI0t +
m+1∑
k=1

bIktπi,t−k +
m+1∑
k=1

dktIIi,t−k + eIit

(i = 1, . . . , N, t = m+ 3, . . . , T )

(6)

Identification of the original model parameters in (5) from estimates of the
reduced form parameters in (6) is only possible if the total number of time
period observations T is sufficiently large.6 However, it is still possible to
use the reduced form estimates to test Granger causality between profits and
information (Holtz-Eakin, Newey, and Rosen, 1988). As this is of primary
interest in this paper, and the length of the panel is relatively short, all
subsequent analysis is conducted using the reduced form model, (6).

Note that, due to the differencing, I am not able to estimate parameters
for the first m + 2 time periods. Cameron (1999) points out that this may
be a problem in estimating the effect of learning on technology adoption in
the case of new crops where learning takes place relatively quickly. How-
ever, in the data, all of the farmers are already adopters (all the households
are pineapple farmers), so I am actually examining the interaction between
profitability and information flows on farmers who are already users of the
new technology. In terms of fully managing all of the aspects of the pineap-

6Holtz-Eakin, Newey, and Rosen (1988) show that this is only possible if T−m−2 ≥ 2m.
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ple crop, including negotiating with exporters over sales, fertilizer applica-
tion rates and timing and other management decisions, the learning process
may continue for quite some time after the crop has been adopted, and
new information may continue to arrive. And a primary advantage of using
quasi-differencing is that I am able to account for time-varying unobserved
heterogeneity in farmer learning. So, the benefits of using quasi-differencing
may outweigh the drawbacks in this particular setting.

The actual estimation of the transformed system (6) is performed by
GLS following Holtz-Eakin, Newey, and Rosen (1988). They demonstrate
that appropriately selected lags of all of the endogenous variables can be
used as instruments (Zt) which can correct for the endogeneity introduced
by the quasi-differencing necessary to remove the unobserved fixed effect.
The model in (6) allows for complete non-stationarity of the parameters on
profits and information over time. In other formulations of the panel vector
autoregression, it is possible to estimate models with stationary parameters
for each of the right-hand side variables by imposing cross-equation restric-
tions, but these restrictions were not appropriate for this data. The procedure
for constructing the final estimator is outlined in the appendix.

3 Data and Panel Construction

The data come from a panel household survey among pineapple farmers in
Ghana between 1997 and 1999. Data were collected approximately every
six weeks, for a total of 15 rounds of data, so the relevant time period t for
the model in (6) is six weeks. Households in the survey area undertake a
wide variety of farming activities, with many taking up the production of
pineapple fruit for export to European markets. There was limited contract
farming among pineapple farmers at the time of the first round of the survey.7

Pineapple farmers therefore were learning about pineapple production mostly
through social networks and extension services.

The survey collected detailed information on household farm composi-
tion, including timing of agricultural activities by plot such as harvests, sales
and input costs. Crops on specific plots are also enumerated over the 15
rounds, with farmers changing plot composition over time. Households can
be observed harvesting pineapple on multiple plots and in multiple rounds.

7In subsequent rounds, contract farming appears to have become more prevalent (Suri,
2008).
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It is this variation that allows the construction of the panel used for this
paper. Table 1 contains household and round specific summary statistics of
the data used in this paper.

The survey is also designed to collect detailed information about farmers’s
information neighborhoods. Information about who farmers know and who
they talk to about farming activities, as well as frequency of interaction with
these contacts were recorded. In addition, a general roster of farmer contacts
was collected and updated for the last six rounds of the survey. For this
information roster, farmers are asked in each round with whom they had
significant conversations in that particular round. This list of information
contacts is recorded for each of the last six rounds and is used to construct the
time varying level of information available to farmers in the panel necessary
to evaluate the model in (6).

In order to estimate model (6), I created time series variables on farmer
profits from pineapple and information on pineapple production from infor-
mation neighbors. For farmer profits, the variable used is average profits
per plant per round. Average profits are calculated by subtracting labor,
input and land costs for each pineapple harvest from revenues earned from
pineapple sales and dividing by the total number of pineapples currently in
production.8 Revenues, inputs9 and land costs are recorded in cedis, the
Ghanaian currency. Hired labor is also given in monetary terms for the
cedis paid to workers, and household labor is evaluated at the prevailing
gender-specific wage rate, under the assumption that labor markets in the
area function relatively well.

3.1 Per round profits

With multiple harvests on a single plot, it becomes difficult to disentangle
input usage across different harvests on the plot.10 In this situation, the

8Pineapple revenues include sales of ripe fruits. The number of pineapples in production
is estimated from the total number of pineapples harvested in each round. For plots with
multiple harvests in multiple rounds, it is assumed that the harvested fruits have been in
production on the plot for the past 10 rounds.

9Inputs refer to any purchased fertilizer or pesticide used during a given round on the
pineapple plot

10This is also due to the fact that pineapple growth occurs over 10 rounds and the survey
length is only 15 rounds long. Therefore harvests on a given plot at intervals smaller than
10 are likely from the same batch of pineapple plants under cultivation which may ripen
at different times due to natural variability in pineapple growth.
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average profits on each pineapple harvest in the plot are calculated by adding
up all revenues and costs and dividing by total number of plants in production
as of each successive harvest. For example, if a farm had two observed
pineapple harvests on a given plot, one in round 6 and one in round 10, the
recorded value for the first average profit would take the total profit on the
pineapples up to round six and divide by the number of pineapples harvested
in round 6 plus the estimated additional pineapples that will subsequently
be harvested in round 10. This average profit value is attributed to the
household for rounds 6, 7, 8, and 9 (i.e., until the next realized pineapple
harvest). The average profit on the second harvest in round 10 would sum up
the revenues and costs for the pineapples in round 6 and round 10 and divide
by the total number harvested in round 10. This average profit calculation is
then the observed average profit for the farmer for rounds 10, 11, 12, 13, 14
and 15. Across plots, per round profits are averaged across the time varying,
round specific total numbers of pineapple plants in each plot. Although this
method of averaging profits tends to dampen the changes in profitability
in each round, it avoids a more serious issue of extreme positive spikes in
profitability that occur in rounds when input costs in that round are minimal
and farmer profits are mostly composed of revenues from sales. For a crop
like pineapple, which takes a year to grow and can be harvested year round,
evaluating profits round by round and not accounting for previous outlays
is not an appropriate way to represent the total profits from the new crop.
Better aggregation of revenues and costs into profits would be possible with
data from a longer panel, but the data available cover only two years of
activity, with many of the pineapple plantings occurring during the second
year. Thus the averaging technique above is judged to be the best alternative
under these limitations.
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Figure 1: Average per round profits by village (N1 = 10, N2 = 38, N3 = 40)

Figure 1 shows the average per round profits for each village in the sample
over all of the rounds of the panel, as calculated in the manner described
above. As can be seen, per plant profits are growing in Village 2, but declining
and stabilizing for Villages 1 and 3. Average profits are also only positive
for Villages 2 and 3. This may be due to the fact that pineapple farming is
more established in these villages.

3.2 Per round information availability

The round-specific measure of information about pineapple production used
is the total number of pineapples ever harvested by members of the house-
hold’s information network, as of that round. The household uses these
observations on pineapple plant harvests to update their own information
on overall plant production. For the amount of information available from
a particular farmer, I use data on observed pineapple harvests that records
numbers of pineapple fruits sold by each observed pineapple farmer in the
sample. The round in which the sale takes place is also recorded. Therefore,
for each farmer in the sample, it is possible to construct a round-by-round
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tally of the total numbers of pineapples they have ever harvested. This num-
ber changes as farmers make multiple harvests. For farmers with only one
recorded harvest, the amount of information available from this farmer is
zero up until the time of their first harvest, and then is equal to the numbers
harvested in the harvest round, and remains at this number for all of the
subsequent rounds until the end of the survey period. With multiple har-
vests, the amount of information is equal to the number of pineapples in the
first harvest until the time of the second harvest. The information is then
the sum of the total pineapples from both harvests, until either the end of
the survey or the next observed harvest period.

Farmers were asked between rounds 10 and 15 to list all of the individu-
als with whom they had significant conversations in each round in order to
construct a roster of information contacts over the survey period. Therefore,
to determine the total amount of information on pineapple production from
farmer i′s social network available per round, I use this changing roster of
contacts in combination with the round-specific measure of information on
pineapples described above. More specifically, for each person listed in farmer
i′s roster in a given round, I add up the associated number of pineapples ever
harvested for the individuals contacted as of the round in which the conver-
sation occurred. Farmers are assumed not to forget information obtained
in previous rounds. Therefore, in addition to the information obtained from
having conversations with different pineapple farmers in different rounds, the
farmer also carries forward any information gathered in previous rounds. Fi-
nally, farmers update their information if they speak with the same individual
in multiple rounds of the survey. The information available to a farmer i in
round t is therefore equal to the sum of the number of pineapples ever har-
vested as of round t by each person with whom farmer i speaks in that round
plus the latest information gathered in previous rounds (t−1, t−2, ...1) from
other individuals in the farmer’s social network (as determined by observing
past conversations), but with whom the farmer has not spoken in round t.
Changes in the composition of the list of conversation contact individuals re-
flect the changing decisions of farmers on to whom they turn for information,
as well as the possibility that new individuals might become more accessible
over time.11

11Information on the length of time over which farmers who have conversations have
known each other is also available. The average length is approximately 17 years, but the
range runs between one day and 80 years.
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Figure 2: Average per round information by village (N1 = 10, N2 = 38, N3 =
40)

The household’s information time series thus consists of the information
available from the social network, which is changing over time both in com-
position of network contacts and in total cumulative numbers of pineapples
harvested by network contacts. It is possible that not all ‘significant conver-
sations’ recorded concerned pineapple farming. Information is available in
the sample on who specifically farmers speak to about pineapple production;
however this information was only collected in one round. Therefore I use
the more general measure of information network given by the changing list
of people with whom farmers talk in a given period. Other information net-
work measures, like networks of family and friends, are also not specific to a
particular enterprise but have been shown to be useful in making predictions
about agricultural production behavior (Bandiera and Rasul, 2006). Fig-
ure 2 presents average information flows per round for each village. Village
3 dominates in the overall sample in terms of the prevalence of pineapple
farming (Goldstein and Udry, 1999), which may explain the overall greater
amount of information availability for farmers in this village. There is a sam-
ple truncation issue involved in using the roster of individuals with whom
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a farmer has conversations to construct the information network, as not all
of the individuals listed in the roster are included in the sample of individu-
als in the dataset (i.e., the household may indicate conversations with other
individuals, like family members living out of town or other villagers who
have not been included in the sample.). Indeed, for the pineapple farmers in
this study, only approximately 20% of their recorded information exchanges
were with other individuals in the sample. But, as the information measure
used is cumulative, the information levels recorded with sample households
represents a lower bound on the total amount of information available to the
farmer. Therefore, further information from other sources is likely merely to
reinforce any results presented here.

After creating the necessary time series variables, I combined them into
a panel dataset for as many farmers as possible in the sample. Given that
the information roster data for each household is only available for the last
six rounds of the survey, the panel only covers these periods (i.e., from round
10 to round 15). In the sample, there are 209 plots on which pineapple is
grown, spread among 91 farmers. However, a record of at least one pineapple
fruit harvest is missing for 11 farmers, leaving a sample of 80 farmers with
six rounds of data on profits and information.

4 Results

The estimates of the transformed model parameters (from equation 6) are
shown in Tables 3 and 4.

4.1 Dynamic analysis of profits and information

Table 3 shows the estimates with own average profits as the dependent vari-
able, while Table 4 has information as the dependent variable. The estimates
from the full (reduced form) model (as in equation (6)) are shown in column
(1) in each table, while the results from estimation of a restricted model,
(used to conduct Granger causality tests) are shown in column (2). In the
course of some preliminary tests of various lag lengths, the best fit was ob-
tained for models with two lags (i.e., m = 2).12 Therefore, the subsequent

12Both the Akaike Information Criterion and a comparison of the sum of squared resid-
uals between models confirmed that at least two lags are best. The short length of the
panel limits the lag lengths that can be tested to a maximum of two.
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analysis is performed with two lags included.

4.2 Own profits, model (1)

In the model with farmer’s own average profits as the dependent variable, the
estimates using the full model (5) with own profits and information seems
to fit the data quite well. The sum of squared residuals for this model is
equal to 0.143 (this is the Q statistic shown at the bottom of the column
(1) estimates). As demonstrated by Holtz-Eakin, Newey, and Rosen (1988),
this Q statistic has a chi-square distribution. Estimation of the parameters
of equation (5) is performed using lags of the endogenous variables as instru-
ments for the right-hand side variables, which become correlated with the
error term through the quasi-differencing procedure. The number of these
instruments minus the number of parameters estimated determines the de-
grees of freedom of the Q statistic and can be used to perform a number of
hypothesis tests on the appropriateness of the model specification, as well as
tests for Granger causality in any of the different right hand side variables.
For model (1), the Q statistic has 2 degrees of freedom. As a conservative test
of fit, the 90% critical value for a chi-square random variable with 2 degrees
of freedom is 4.61. Therefore, with a Q statistic of 0.143, I cannot reject the
hypothesis that the full model as shown in column (1) is appropriate for the
underlying data generating process.

The parameter estimates for the full model show that several of the lags of
both own profits and neighbor information are significant in determining cur-
rent profits with pineapple. However the influence of the longer lags (which
represents 12 and 18 weeks of time, respectively) is mixed. The difference in
effects of earlier versus later lags of the own profits and information variables
may suggest that older information, both from one’s own experiments (given
by lagged profits) and others (given by lagged information) is less useful
in achieving higher profits than newer information. The information about
pineapple farming, either from own profits or from harvests of information
neighbors in earlier periods may not remain relevant for farmers using it as
a tool to improve their profits from the new crop in the current period, as
marketing conditions may change.
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4.3 Granger causality test of the effect of information
on profits (model(2))

The parameter estimates in column (2) in Table 3 represent estimates from
a restricted model that excludes information flows. By comparing the Q
statistic from the restricted model (QR) with that of the unrestricted model
(Q), following Holtz-Eakin, Newey, and Rosen (1988, 1989), I can con-
duct a Granger causality test of whether or not information flows can be
said to cause farmer profits from growing pineapples. The appropriate test
statistic, L, is a criterion function statistic that takes the difference in the
sum of squared residuals in the restricted model and the unrestricted model
(Wooldridge, 2002, pg. 202)) (i.e., L ≡ QR − Q.) This statistic has a lim-
iting chi-square distribution, with degrees of freedom equal to the difference
in the degrees of freedom of the restricted and unrestricted statistics. By
eliminating information flows, the difference in the sum of squared residuals
between model (2) and model (1) is L = 213.945− 0.143 = 213.802 and the
degrees of freedom of L are: d.o.f(L) = 8−2 = 6. The 90% critical value for
a chi-square random variable with four degrees of freedom is 10.64. There-
fore, I can strongly reject the hypothesis that information flows do not cause
farmer profits. This is in line with other results on learning and technology
adoption, like Foster and Rosenzweig (1995).
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4.4 Information flows, model (1)

Table 4 presents estimates of the model in equation (6) with information
flows as the dependent variable. Lagged information is significant in ex-
plaining current information availability in round 14 and lagged profits and
information are both strongly significant in explaining current information
levels in round 15. Lags of information generally positively affect current
information flows. Recent lags of profits negatively affect information, while
longer lags positively affect current information availability. This may reflect
changes in the substitutability of information between oneself and one’s in-
formation neighbors. In some periods, larger profits may limit the need to
seek out information from others, while at other times, larger profits may
encourage greater communication between individuals by reducing the rela-
tive social distance between them. However, a more structured analysis than
the one presented here is necessary to further examine these kinds of dynam-
ics and is beyond the scope of this paper. The overall fit of the full model
with information as the dependent variable is also not strong and this full
model is rejected at the 3% level of significance. Further specification tests
or additional covariates may be necessary to better identify the information
equation.

4.5 Granger causality test of the effect of profits on
information (model(2))

Column (2) in Table 4 shows the estimates of a restricted model without
profits in order to test Granger causality between profits and information.
Using the same test statistic as described in section 4.2, the test statis-
tic L is: L = 227.002 − 6.743 = 220.259 and its degrees of freedom are
d.o.f(L) = 8 − 2 = 6. With this value for L, I can still strongly reject
the hypothesis that profits do not cause information, and they appear to
have a large amount of explanatory power in the information equation in
round 15. Therefore, this demonstrates that profits with a new technology
may also impact information networks. This fact may be critical in under-
standing patterns of technology diffusion and the subsequent impact of the
introduction of new technologies on farmer welfare. The information from
the social network responds to profitability, and given the results in section
4.2 profitability eventually responds to changes in information levels.

These results may add to the discussion presented in Moser and Bar-
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rett (2006) on social conformity and technology adoption and disadoption
decisions by providing further empirical evidence of the interaction between
technology use patterns and social dynamics. For example, among the results
presented in this paper, it is the case that in some periods, such as round 15,
that there appears to be a reinforcing process at work between profitability
with a new technology and information flows. When results from both the
profit and information equation are taken simultaneously, the positive pa-
rameter estimates on the one period lagged information variable in the profit
equation as well as a positive parameter estimate on the one period lagged
profit variable in the information equation indicate that successful pineapple
farmers have access to more information, which brings them greater prof-
itability with the new crop, while relatively unsuccessful farmers obtain less
information overall about pineapple farming from their network, leading to
lower profitability. If profitability were to fall to an extremely low level, one
might imagine that a farmer may decide to disadopt the crop altogether.
The results in this paper suggest that this decision would in part be due to
the impact of changes in the information available from the social network.
Less successful farmers may become more socially invisible, with information
decreasing due to fewer contacts over time, or may be shut out of better infor-
mation networks, with the information levels from existing network contacts
declining over time. Moser and Barrett (2006) suggest that social conformity
effects influence the disadoption decision. Social pressures on unsuccessful
farmers through increasing costs of network maintenance may also be a part
of this process.
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5 Conclusions

The results of this work have shown complex nature of technology use and
information diffusion among small farmers undertaking a new agricultural
crop. There are many possible interactions that affect profitability that may
be important in considering the potential of new crops to lift poorer rural
households out of poverty.

First, information about a new technology from a farmer’s social network
is important in the overall profitability of a crop. This may be critical in
determining farmers management of a new crop.13 Farmers without adequate
information networks will not be as successful with the new crop as those
with high quality information networks. Socially isolated farmers may need
an injection of information inflows from an external source (perhaps from an
extension service) to ensure initial success with a new crop.

Second, information flows in this sample are also affected by current crop
profitability. Although the effects of profitability change over time, in certain
periods, unsuccessful farmers may find that they are able to obtain less useful
information about the crop, with potentially serious results on future prof-
itability. On the other hand, farmers with high levels of success with a new
crop may be able to eventually secure better information network contacts
for themselves, and the need for external assistance and information support
may become less critical over time. It may be important to identify and more
specifically characterize social network structures, in order to better ensure
wide-spread diffusion of a beneficial technological intervention among both
well-connected and less visible farmers.

Third, there appear to be tradeoffs between learning by doing and learn-
ing from others that change over time, with own experimentation and learn-
ing by doing substituting for learning from others in certain periods, and
profitability and learning by doing facilitating expansion of the information
available from the social network in others.

Analysis of the dynamics of profitability and information flows has been
conducted in past studies (Foster and Rosenzweig, 1995; Munshi, 2004) but
usually under some strong assumptions that a farmer’s information network
is composed of their entire village, which has been shown not to be the case
(Conley and Udry, 2001). In looking at this process with better informa-
tion about the farmer’s network contacts, it is possible to begin to better

13This has been shown to be the case in Bandiera and Rasul (2006).
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distinguish farmers who are likely to be successful with a new technology,
by virtue of their improved access to information, from those that may not
be able to change their agricultural crop portfolio due to a lack of critical
information from others. Further, profits may eventually affect information
flows, suggesting that the process of technology diffusion may never reach
certain members of a village and that those who do not adopt might also
lose opportunities for increasing the size of their social network, which may
have other consequences as shown in the risk-sharing literature (Townsend,
1994; de Weerdt and Dercon, 2006). Knowledge of the different possible re-
lationships between information flows and new technology dynamics through
the use of time series analysis may help improve understanding of the process
of technology diffusion as well as the ingredients necessary for new adoption
and the consequences for existing social network structures.

A The Transformed Panel Vector Autore-

gression Model

In order to eliminate the individual fixed effect, µi from the model shown
in equation 4, I employ the process of quasi-differencing proposed by Cham-
berlain (1983). This process involves multiplying the model in equation 4 at
time t− 1 by rt = Ψt/Ψt−1, the ratio of the time-varying parameters on the
fixed effect, and then subtracting this transformed equation from the equa-
tion representing behavior at time t. This removes the fixed effect, and allows
for unbiased estimation of the model parameters, given that it includes lags
of endogenous variables.

In the model I estimate in this paper, with two lags (m = 2) and two
endogenous variables, the quasi-differencing procedure results in the following
transformation of the model parameters:

πit = απ0t + βπ1tπit−1 + βπ2,tπit−2 + γπ1tIi,t−1

+γπ2tIi,t−2 + Ψπ
t µi + επit

−rtπit−1 = rtα
π
0,t−1 + rtβ

π
1t−1πi,t−2 + rtβ

π
2t−2πi,t−3 + rtγ

π
1t−1Ii,t−2

+rtγ
π
2t−2Ii,t−3 + rtΨ

π
t µi + rtε

π
it−1

πit = aπ0t + bπ1tπi,t−1 + bπ2tπi,t−2 + bπ3tπi,t−3 + dπ1tIi,t−1

+dπ2tIi,t−2 + dπ3tIi,t−3 + eπit

(7)
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with:
a0t = α0t − rtα0t−1

b1t = β1 + rt

b2t = β2t − rtβ1t−1

b3t = −rtβ2t−2

d1t = γ1t

d2t = γ2t − rtγ1t−1

d3t = −rtγ2t−2

eit = εit − εit−1

(8)

Note that the quasi-differencing results in time-varying coefficients in the
transformed model and also implies cross equation restrictions across time
periods. The new error term on the transformed model is a function of
errors from time t and time t−1. This is the reason why the instruments are
necessary for estimation of the transformed model and why they must have
at least a lag length of two to be appropriate.

B GLS Estimation of the Transformed Panel

Vector Autoregression System

Following Holtz-Eakin, Newey, and Rosen (1988) I estimate the transformed
model 5 by general least squares. Given that the first four time periods
cannot be included in the estimation directly, due to the quasi-differencing
procedure described above, I estimate a two period system of equations for
each endogenous variable (own profits and information flows).

Designating profits as the dependent variable for the purposes of illus-
tration, the system of equations for profits (Y ) and information (X) over
i ∈ {1, 2, ..., N} individuals, Yt = [y1t, ...yNt]

′, Xt = [x1t, ...xNt]
′ can be de-
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scribed by the general linear model:

Y = WB + U

with

Y = [Y ′m+3, ..., Y
′
T ]′

((T −m− 2)Nx1)

B = [B′m+3, ..., B
′
T ]′

((T −m− 2)(2m+ 3)x1)

U = [U ′m+3, ..., U
′
T ]′

((T −m− 2)Nx1)

W = diag[Wm+3, ...,WT ]

(9)

where Wt is the (Nx(2m + 3)) matrix of right-hand side variables, Wt =
[1, Yt−1, ..., Yt−m−1, Xt−1, ...Xt−m−1] and diag[] designates a block diagonal
matrix with the given matrix entries along the diagonal. B is the vector
of least squares parameters to be estimated.

GLS requires the use of a consistent weighting matrix, Ω. This can be
estimated in a first stage 2SLS estimation of the round specific parameters
which generates round specific residuals, ût that can be used to construct Ω̂
as follows:

(Ω̂/N)rs =
N∑
i=1

(ûirûisZ
′
irZis)/N (10)

with ûit estimated over the time periods t = 5, 6 (t = r, s) for all farmers in
the sample, i = (1, . . . , N).

Z ′it is the lt dimensional vector of household/round specific instruments
available at time t that can be used to estimate the transformed model, 3.5.
Note that the number of instruments increases as time goes on, because all
lags of the endogenous variables longer than two time periods can be used as
instruments. Therefore, in t=5, there are 3 lags of each endogenous variable
plus the constant that can be used (therefore l5 = 7), while in t=6, there are
4 lags available (and l6 = 9).

After estimating Ω̂/N , the final GLS estimator B̂ is:

B̂ = [W ′Z(Ω̂)−1Z ′W ]−1W ′Z(Ω̂)−1Z ′Y (11)

with standard errors diag(

√[
W ′Z(Ω̂)−1Z ′

]−1

).
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